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ABSTRACT

Atlantic menhaden along the eastern seaboard of the United States develop 
characteristic ulcerative lesions, a condition termed ulcerative mycosis. These lesions are 
identical to those seen across Asia in fish affected by epizootic ulcerative syndrome, a 
condition caused by the oomycete Aphanomyces invadans. Recently, there has been 
much debate as to the cause of the lesions and massive fish kills in which the majority of 
menhaden exhibit these lesions. Young-of-the-year menhaden inhabiting estuarine 
environments are the primary species affected and little is known about the factors 
involved in the initiation of the lesions, or why menhaden are predominantly infected. A 
biological stain, fast green, was used to determine whether hypoxia, a stressor commonly 
encountered in estuarine environments, could cause epidermal damage, perhaps 
providing a means for penetration by A. invadans. Results indicated that fish exposed to 
hypoxia showed a greater percentage of stained surface area, possibly indicative of areas 
of cell death. Aqueous bath exposures were then carried out to determine whether 
exposure to hypoxia would cause a greater prevalence of lesion development in 
menhaden. Fish were exposed with 100 zoospores/mL for 6 hours but only a few 
developed lesions. While only fish exposed to the oomycete developed lesions and at 
least one fish in each treatment with the oomycete developed a lesion, positive controls 
did not develop significant percentages of lesions. No difference occurred between fish 
exposed to hypoxia prior to zoospore exposure and fish that did not experience hypoxia. 
Problems were encountered with batch production of zoospores, so a series of 
experiments were undertaken to optimize the methods for sporulation. The media used to 
grow the hyphae, the volume of the media used, the sporulation water used and the light 
cycle seemed to play significant roles in the outcome of the sporulation. Atlantic 
menhaden, hogchoker, striped killifish, mummichog and mullet were inoculated with 80 
zoospores/fish to explore species differences in lesion development. All species 
developed lesions with the exception of mullet. Killifish developed lesions similar to 
menhaden while hogchoker and mummichogs developed only subdermal hemorrhaging 
and mummichogs showed evidence of myocyte regeneration. These experiments show 
that species barriers as well as ecological barriers help to explain some of the factors 
involved in the initiation of lesions in menhaden.
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OVERVIEW

In recent years, fish kills along the eastern seaboard of the United States involving 

Atlantic menhaden (Brevoortia tyrannus) have attracted intense interest (for review see 

Dykstra and Kane 2000). Menhaden and other fishes develop characteristic ulcerous skin 

lesions that have previously been attributed to the activity of the toxic dinoflagellate, 

Pfiesteriapiscicida (Burkholder et al. 1992,1995, 2001). During 1997, P. piscicida was 

implicated in several small fish kills, outbreaks of lesions in menhaden, and adverse 

human health effects in Maryland portions of Chesapeake Bay (Grattan et al. 1998).

Since then, lesions in menhaden have been used in conjunction with presumptive counts 

of Pfiesteria-liks cells in water samples, PCR based assays of water samples, and toxic 

fish bioassays to monitor for Pfiesteria activity in Maryland and North Carolina 

waterways (Burkholder et al. 2001). The prevalence of lesions has been used to make 

decisions regarding temporary river closures. The observed co-occurrence of menhaden 

lesions and Pfiesteria piscicida in certain acute fish kills in estuaries of North Carolina 

and a laboratory exposure study have provided some support for these decisions. Striped 

bass (Morone saxatilis) and tilapia (Oreochromis spp.) exposed to sublethal levels of P. 

piscicida exhibited a complete loss of epidermis after 48 hours, followed by the 

development of ulcers in tilapia allowed to recover from the exposure to Pfiesteria. The 

ulcers were mainly colonized by bacteria, but oomycete hyphae were seen in one ulcer 

(Nogaetal. 1996).

2
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The characteristic skin lesions in menhaden (Figure 3) are often located near the anus, 

and appear as deeply penetrating circular lesions with extensive necrosis and tissue loss. 

Histologically they are characterized by dermatitis and myositis with intense 

granulomatous inflammation associated with myonecrosis. A deeply penetrating, highly 

invasive species of oomycetes, Aphanomyces invadans, accompanied by an intense 

granulomatous inflammatory response has been consistently observed in the lesions 

(Dykstra et al. 1986, Noga and Dykstra 1986, Levine et al. 1990a, Noga et al. 1993, 

Blazer et al. 2002). This finding has brought into question the role of P. piscicida in the 

development of lesions in menhaden, and the utility of these lesions as an indicator of 

recent local Pfiesteria activity. Oomycete hyphae often penetrate the visceral organs of 

infected fish and a suite of bacteria and other saprophytic water molds usually co-occur 

as secondary invaders (Noga and Dykstra 1986, Noga et al. 1988, Levine et al. 1990). 

Recent investigations of menhaden from Chesapeake Bay indicate that the water mold 

has a very high prevalence in the lesions (> 95%), an association typical of an etiological 

or causative agent (Blazer et al. 1999). Further, the host exhibits a classical 

granulomatous cellular response to the water mold indicating that the lesions are at least a 

week or two old.

Vogelbein et al. (2001) contrasted lesions in wild menhaden with laboratory-induced 

pfiesteriosis in tilapia (Oreochromis niloticus). Tilapia experienced a complete erosion 

of the epidermis and focal hemorrhaging below the pectoral fin. The inflammation and 

cellular response was minimal, while the lesions in menhaden exhibited as deep 

penetrating ulcers with an intense cellular response. The variations between the two 

pathologies suggested completely different etiologies. More recently, Kiryu et al. (2002)
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was able to induce lesions in menhaden similar to those seen in the wild through 

inoculation and bath challenges of fish with zoospores of Aphanomyces invadans. 

Menhaden exposed in bath challenges experienced a higher prevalence of lesions when 

abraded with a net, indicating that a portal of entry enhanced the infectivity of the water 

mold.

The occurrence of this disease in menhaden has been termed ulcerative mycosis 

(UM). Lesions such as those described have been seen in menhaden since 1984 (Levine 

et al. 1990a) and are identical to other ulcerative diseases seen across the world, which 

are now collectively termed epizootic ulcerative syndrome (EUS). EUS was first 

recognized in the 1970s in farmed ayu (Plecoglossus altivelis) and has since spread 

across Asia and Europe'affecting numerous estuarine species such as snakehead (Channa 

striatus), grey mullet (Mugil cephalus), and ayu (Lilley et al. 1998). The disease is 

caused by Aphanomyces invadans, which invades the dermis presenting initially as 

petechia. Once established, the water mold continues to invade, causing small circular 

lesions that continue to develop into large necrotic ulcers (Lilley et al. 1997).

In a review article, Noga (2000) discussed risk factors that have been shown to 

damage the epithelium and possibly play a role in the development of skin ulcers (defined 

as the loss of epidermis). These included environmental factors such as hypoxia, 

ultraviolet radiation, salinity fluctuations, and changes in water temperature, which are 

common in estuarine environments. Little research has been done on possible 

relationships between ulcerative mycosis and environmental stressors, but there has been 

some investigation into relationships between EUS and environmental factors and disease 

events do appear to be “triggered” or promoted by certain environmental conditions.
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Chinabut et al. (1995) investigated the possible effects of temperature on EUS and 

found that snakehead subjected to temperatures of 19°C experienced mortality when 

injected with zoospores of Aphanomyces invadans, while those individuals kept at 26°C 

or 31°C experienced no mortality and were able to heal lesions that formed. Catap and 

Munday (1998) found similar results in sand whiting (Sillago ciliata) kept at 17°C. This 

may help explain why in some areas, EUS appears to be a cyclical disease, occurring 

during times of lower water temperatures (Virgona 1992, Chinabut et al. 1995, Catap and 

Munday 1998, Lilley et al. 1998).

Virgona (1992) tracked outbreaks of red spot disease (RSD), (now considered EUS), 

in sea mullet (Mugil cephalus) in New South Wales from 1972-1988 and discovered a 

strong correlation between disease events and rainfall. Not only did outbreaks occur in 

the cooler, autumn months but they also followed periods of above average rainfall. In 

fact, the first ever recorded outbreak of RSD disease occurred after a period of the highest 

rainfall in 85 years in October of 1972. Callinan (1994) also reported a link between 

rainfall and disease outbreaks but believed this was related to acid sulfate soil runoff 

caused by the rainfall event. He hypothesized that acid sulfate runoff caused skin 

damage to fish allowing the fungus to attach and invade the underlying dermis. Paerl et 

al. (1998) did an extensive study on low oxygen in the Neuse River Estuary and found 

that fish kills occurred on the margins of areas where oxygen levels sank below 2mg/L. 

From July through September of 1994-1996, this encompassed a 25km stretch of the river 

and included numerous fish kills. Clearly, more research is needed to elucidate which 

environmental events or triggers may play a role in outbreaks of disease, but temperature, 

salinity and hypoxia all appear to be contributing factors.
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One of the most common stressors found in the estuarine environment is hypoxia, 

or low levels of dissolved oxygen. Only a few studies have been done on the effects of 

hypoxia on fishes and these have focused on LD5o values, avoidance behaviors or 

physiological responses. Sublethal effects of hypoxia include immunosuppression, 

increased stress hormones, ulcerative skin lesions and loss of cellular oxidative processes 

(Law 2001), but these have not been explained in detail.

Plumb et al. (1976) investigated effects on channel catfish (Ictalurus punctatus) 

following a natural hypoxic event in an 8.9 ha pond. A die off of a dense bloom of 

Anabaena variabilis caused the pond to become anoxic for two days. Moribund catfish 

were collected and were found to exhibit hemorrhaging of the dermis, hypodermis and 

musculature along with necrosis of striated muscle bundles. The catfish also exhibited 

lesions that were later colonized by Aeromonas hydrophila.

Drewett and Abel (1983) subjected brown trout (Salmo trutta) to oxygen 

concentrations of 0.5,1.0 and 1.5 mg/L and upon microscopic examination found 

numerous small breaks in the gill epithelium and congestion of the liver. Scott and 

Rogers (1980) did a similar study examining the effects of 1.5 ppm oxygen 

concentrations on channel catfish over 24,48 and 72 hours. In tissues examined 

histologically, they found edema, hyperplasia and necrosis of the spleen, hemorrhaging 

and hyperaemia of the liver and kidney, edema and necrosis of the kidney and 

hyperplasia and hypertrophy of the gills.

The objectives of my research were to (1) investigate the effects of hypoxia on skin 

using Fast Green FCF as a biological stain, (2) explore the role of hypoxia in the etiology 

of lesions in Atlantic Menhaden, by conducting hypoxia and A. invadans zoospore
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challenges, (3) develop a method for bath sporulation of A. invadans and (4) explore the 

response of five different estuarine species to transfection with A. invadans.
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Chapter 1 - Literature Review

Atlantic Menhaden

The Atlantic menhaden is an abundant, commercially important clupeid fish 

found in coastal waters and estuaries along the eastern United States (Ahrenholz et al.

1989). Menhaden spawn during the winter months at 2 or 3 years of age (Merriner and 

Vaughan 1987), predominantly off the coasts of Virginia and North Carolina. The eggs 

hatch in waters off the continental shelf and the larvae immigrate to estuaries where they 

spend the first year of their life in the shallow, oligohaline zones. During the spring, the 

larvae metamorphose into juveniles and grow at high rates throughout the summer 

months (Friedland and Haas 1988).

While offshore, larvae are particulate omnivores and metamorphose into obligate 

planktivores in the estuaries. Menhaden remain filter feeders into adulthood, ingesting an 

increasingly larger particle range (greater than 16pm). While in the estuaries, schools of 

menhaden are distributed by phytoplankton gradients and are most abundant in areas of 

lower salinity (4-6 psu) near the chlorophyll maximum (Friedland et al. 1996, Friedland 

and Haas 1988). In autumn of their first year, as water temperatures drop below 24°C, 

huge schools of menhaden migrate back to the coastal ocean (Friedland and Haas 1988). 

Atlantic menhaden are an important component of the diet of bluefish (Pomatomus 

saltrix), striped bass (Morone saxatilis), black fin tuna (Thunnus atlanticus) and sharks. 

Seasonally, they are also integral members of estuarine and shelf fish

8
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assemblages. During the migratory season in 1981 and 1982, Friedland and Haas (1988) 

caught up to 40,000 menhaden per pound net per day in the York River, a tributary of the 

Chesapeake Bay. Due to their abundance they influence the conversion and exchange of 

energy and organic matter throughout their extensive migratory range (Rogers and Avyle 

1983). Menhaden also support a significant fishery. During the 1990s, menhaden 

supported the largest commercial finfish fishery in Virginia by weight and the third 

largest fishery on the US East Coast behind scallops and blue crabs (Kirkeley 1997). The 

industry annually harvests from 500-600 million pounds with a dockside value of $18-25 

million. Together with Gulf menhaden {Brevoortia patronus), it comprises the largest 

US commercial fishery by weight (Rogers and Avyle 1983), and the 4th largest in 

Chesapeake Bay in value.

Ulcerative mycosis

Ulcerative mycosis (UM) was first recognized as a distinct clinical entity 

affecting fish when an epidemic of the disease was reported in the Tar-Pamlico estuary, 

North Carolina and the Rappahannock River, Virginia (Levine et al. 1990a). Fish first 

began to display deep, crater-like lesions in Spring, 1984, and the prevalence of lesions 

increased with a large fish kill occurring in November of that year (Ahrenholz et al.

1987). Noga and Dykstra (1986) histologically examined 20 fish collected from pound 

nets set in the Pamlico River. Most fish had only one lesion, characterized by intense 

chronic inflammation and the formation of granulomas. A total of 56 lesions were 

examined microscopically and 95% were found to contain broad aseptate fungal hyphae. 

These were identified as primarily Aphanomyces sp. with a few Saprolegnia sp.
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Noga and Dykstra (1986) highlighted the importance of these findings, as the 

water mold was the only organism consistently found in all lesions examined and intense 

granulomatous inflammation associated with infection by oomycetes had rarely been 

observed. While these papers reported preliminary findings, a technique for isolating the 

fungal hyphae had not been developed, making it difficult to confirm that the water mold 

was indeed the primary pathogen. Willoughby and Roberts (1994) developed an 

isolation method for obtaining axenic cultures of Aphanomyces from fish tissue, which 

has facilitated further research. Their method involves growing mycelia from thin slices 

of muscle in a broth medium containing penicillin and oxolinic acid to discourage 

bacterial growth followed by transfer of mycelia first after 6 and then again at 24 hours of 

growth to fresh broth. The colonies are then transferred to solid media and routinely 

maintained in glucose peptone yeast broth and sub-cultured onto solid media every 4-5 

weeks.

In subsequent years, UM continued to occur in outbreaks in estuarine systems 

(Ahrenholz et al. 1987, Noga et al. 1988, Dykstra et al. 1989) raising concerns regarding 

the impact of the disease on the menhaden fishery. By 1989, UM was recognized as a 

regional problem throughout the mid and south Atlantic estuaries (Levine et al. 1990a). 

Early attempts to collect prevalence data were poor, although it became clear that young- 

of-the-year (YOY) Atlantic menhaden were the most affected species with far lower 

prevalences (0.1% -1.2%) observed in other species such as gizzard shad (Dorosoma 

cepedianum), weakfish (Cynoscion regalis) and silver perch (Bairdiella chrysura)

(Levine et al. 1990b).
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Noga et al. (1988) attempted to classify the lesions into five types showing 

progression of the lesions. However, this was done on menhaden caught in the wild and 

not on experimentally infected fish so the progression of the lesions from one stage to the 

other was inferred. Early Type I lesions were the smallest recognized, appearing as flat, 

red or yellow-red areas of the skin up to 5 mm in diameter. The inflammatory response 

in these fish consisted primarily of macrophages with the oomycete infection appearing 

to originate in or near a scale pocket. Early Type II lesions were classified as raised 15- 

20 mm areas with a small amount of scale loss. Histologically, a small ulcerated area 

was seen in the center of the lesion along with an intense granulomatous response. 

Advanced lesions (Type III) were open ulcers up to 25 mm in diameter with numerous 

hyphae found penetrating into the muscle tissue. These lesions extended deep into the 

body, often involving surrounding organs. End-stage lesions (Type IV) occurred after the 

necrotic core of fungal-infected tissue was presumably sloughed leaving a crater-like 

cavity surrounded by dark red to white skeletal muscle tissue. Healing responses (Type 

V) were infrequent and were described as lesions in which the muscle tissue had been 

replaced by fibrous connective tissue and appeared as smooth, non-ulcerated areas of 

tissue loss.

Epizootic Ulcerative Syndrome (EUS1

Reports of oomycete infections in fish date back to the mid 1700s and most are 

characterized by a white cottony mycelium occurring on the skin of the affected animal 

(Neish 1980). In general, species of Saprolegnia are opportunistic, or secondary invaders 

colonizing already existing wounds and their potential as primary pathogens has been 

downplayed. Many teleost fishes have been experimentally infected with saprolegnian
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oomycetes, yet little is known about the environmental and host conditions that allow the 

infection to develop (Neish 1980). While Saprolegnia spp. are capable of being primary 

pathogens, a portal of entry, such as a break in the epidermis allows the oomycete to 

invade the dermis and proliferate much more readily.

Ulcerative syndromes associated with the water mold Aphanomyces have been 

reported over the last 25 years, affecting many species of freshwater and estuarine fish 

throughout Asia and Australia. The first report of ulcerative lesions occurred in 1971 in 

farmed ayu. The disease was described by Miyazaki and Egusa in 1972 and called 

mycotic granulomatosis (MG) (Lilley et al. 1998). It was characterized by an intense 

granulomatous response to invasive fungal hyphae, which was isolated by Hatai et al. 

(1977) and named Aphanomyces piscicida. Epizootic ulcerative sydrome (EUS) was first 

reported in the mid 1970s from Papua New Guinea and has since spread westward across 

Asia, affecting numerous species of estuarine fishes. Around the same time, a similar 

ulcerative condition known as red spot disease (RSD) was spreading throughout Australia 

affecting estuarine fishes, particularly grey mullet. In 1992, Fraser et al. isolated an 

Aphanomyces sp. from diseased fish in Australia, which was later shown to reproduce the 

disease in bath challenges (Callinan 1994). Both strains of Aphanomyces isolated in MG 

and RSD have since been identified as Aphanomyces invadans, the cause of EUS. The 

disease has since been reported in 18 countries (Lilley et al. 1998).

EUS and lesions seen in menhaden are similar, both consistently show 

granulomatous inflammation, which arise from penetration of fungal hyphae into the skin 

and underlying tissue, and both develop into large necrotic ulcers (Lilley et al. 1998). 

Several reports have described the pathology of the disease, which is characterized by the
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presence of invasive mycelia of Aphanomyces invadans in a single, circular, necrotic 

lesion (Lilley et al. 1998). The syndrome is thought to initiate as a petechia that develops 

on the ventrolateral surfaces of the body. As the water mold invades the tissue, small (2- 

4cm), circular, hemorrhagic, edematous ulcers form (Lilley et al.1997). In advanced 

stages the ulcers expand to form the characteristic, large, necrotic open lesions that 

extend into the musculature. Death is thought to result from secondary bacterial 

infections or from hyphal penetration into the abdominal viscera and vital organs (Lilley 

et al. 1998).

In Australia, outbreaks of EUS occurred following major rainfall events (Virgona 

1992). This rainfall reduced salinity at outbreak sites to <2psu, a salinity which allows A. 

invadans to sporulate (Kiryu et al. 2002). These rainfall events cause acidified runoff to 

lower the pH (Sammut et al. 1996) or introduce organic matter, reducing dissolved 

oxygen concentrations. Both low pH and hypoxia can initiate epidermal damage, 

allowing A. invadans zoospores to invade the fish (Lilley et al. 1997).

Since a diverse group of abiotic and biotic factors appear to influence the 

occurrence of EUS, it is unlikely that a specific environmental factor is always associated 

with the outbreaks. It is more likely that the initiating factor varies from outbreak to 

outbreak in relation to the surrounding environment. Further research is needed to 

identify these possible relationships (Lilley et al. 1997).

Aphanomyces invadans

The genus Aphanomyces belongs to the Oomycota, a phylum of water molds that 

was previously considered a class in the fungi. It and several other classes of the lower 

fungi are now considered separate phyla with distinct homologies to the Protozoa (Dick
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1990). Oomycetes produce motile, heterokont spores with two flagella (whiplash and 

tinsel type) , one of the characteristics that separates them from the true fimgi. These 

zoospores are produced in zoosporangia that represent the primary means of asexual 

reproduction and dispersal. All oomycetes have a eucarpic, coenocytic thallus meaning 

they only use part of their cytoplasm to make spores and produce hyphae with little or no 

septa. The development of zoosporangium and mode of zoospore release are the two 

main characteristics used to delineate species of oomycetes (Neish 1980). The class 

Saprolegnia, to which Aphanomyces belongs, is diplanetic, producing two types of 

zoospores, with highly motile secondary zoospores emerging from cysts of the primary 

zoospores. In Aphanomyces, primary zoospores typically occur in a single row within the 

zoosporangium with encystment occurring at the apex of the zoosporangium. (life cycle 

shown in Figure 4)

Aphanomyces invadans is a slow-growing, aseptate oomycete with intercalary and 

terminal zoosporangia. Zoosporangia produce non-motile primary zoospores that encyst 

and then excyst to produce biflagellate secondary zoospores (Lilley et al. 1998). The 

water mold is slow growing in culture; gaining only 4 mm/day and cultures are frequently 

overgrown by faster growing, free-living saprophytic species and bacteria. No sexual 

structures have been observed. However, mature zoospores that fail to develop will 

germinate as a large unit, a giant cyst derived from several fused zoospores (Willoughby 

et al. 1995). Sporulation occurs below salinities of 2 psu, but zoospores can tolerate 

salinities up to 20 psu, though this may be a strain-dependent trait. Optimum growth of 

A. invadans occurs between 20 to 30°C and below 8 psu (Fraser et al. 1992, Lilley and 

Roberts 1997, Shaheen et al. 1999). Fowles (1976) reported an optimum pH of 7 for
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other species of Aphanomyces and our lab has found 6.8 to be the optimal pH for growth 

of our strain of A. invadans (unpublished data).

Role of stress

Stress often plays an important role in disease outbreaks (Snieszko 1974). The 

term stress has been defined in various ways but here will be used as defined by Selye (in 

Wedemeyer 1970), who stated that stress is "the sum of all the physiological responses by 

which an animal tries to maintain or re-establish a normal metabolism in the face of a 

physical or chemical force". A stressor, therefore, is the chemical or physical force that 

is causing the stress.

The morphological, biochemical and physiological changes that occur as the 

result of stressors are collectively termed the general adaption syndrome (GAS), which 

has three stages: the alarm reaction, the stage of resistance, and the stage of exhaustion. 

The metabolic changes occurring in these stages are not species specific and are generally 

similar for all stressors (Wedemeyer 1970). The earliest consequences of stress are 

endocrine changes and these are referred to as primary effects. Primary effects include 

the release of corticosteroids and catecholamines. These both lead to secondary effects 

including decreased white blood cell counts, decreased muscle protein, increased heart 

rate, and increased blood glucose levels. Secondary effects are those that occur as a 

result of these endocrine changes (Mazeaud et al. 1977). The duration of stress has some 

bearing on the physiological outcome (Wedemeyer 1970), but it has been shown that 

even brief exposure to a stressor can bring about long lasting effects (Mazeaud et al.

1977). Wedemeyer and Goodyear (1984) included a tertiary level of effects. These 

include decreased inflammatory response, poor antibody response and poor healing of
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wounds. These result from increased plasma corticosteroid levels leading to protein 

deficiency (Neish 1980). Effects on growth, survival, longevity and reproduction are 

likely to be seen even at the population level (Wedemeyer and Goodyear 1984).

The theory that environmental stress can trigger outbreaks of infectious diseases 

in fish populations (Meyer 1970, Wedemeyer 1970, Snieszko 1974) is based primarily on 

the coincidence of stress with outbreaks of infectious diseases (Snieszko 1974). There is 

still much to be learned about the relationship between the stress response of the fish and 

the subsequent increase in its susceptibility to disease (Pickering and Dunston 1983). At 

the present time, tolerances to specific stressors are not well defined for most species, 

even with those stressors that occur singly. This problem is made more complicated by 

the fact that fish populations are normally exposed to many stressors (Wedemeyer 1984).

A few recent studies have provided evidence that skin damage following exposure 

to environmental stressors can be mediated through the actions of stress hormones and 

can result in increased susceptibility to opportunistic microbial infections (Pickering and 

Dunston 1983, Iger et al. 1995). Noga et al. (1998) induced profound skin ulceration in 

striped bass and hybrid bass (M saxatilis female x M. chrysops male) subjected to acute 

confinement stress or epinephrine injection. Cultures from the fish were streaked on 

blood agar plates, showing that the lesions supported little microbial growth, ruling out 

an infectious etiology. However, in a previous study, Noga et al. (1994), observed rapidly 

developing opportunistic infections in bass subjected to acute confinement stress. Harms 

et al. (1996) observed a similar response in net-stressed striped bass with red tail.

Another stressor, hypoxia has also been shown to increase the susceptibility of fishes to 

infection (Bunch and Bejemo 1997). Plumb et al. (1976) showed that low oxygen
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resulted in hemorrhaging in the dermis and hypodermis and necrosis in underlying 

striated muscle bundles of channel catfish (Channa striatus). Such skin responses in 

fishes may play an important role in the frequent and devastating occurrence of 

opportunistic infections in fish culture operations and the increasing observations of 

dermatological pathologies in wild fishes.

Hypoxia as a stressor

Estuaries, such as those inhabited by menhaden, are often characterized by large 

fluctuations in dissolved oxygen and are particularly noted for their development of 

hypoxia (Burnett 1997). Hypoxia can occur for several reasons including ice cover, 

pollution, poor mixing, presence of a pycnocline and high primary productivity (Heath 

1995). Time scales of variation in oxygen levels range from seasonal to hourly to daily 

with large diurnal oxygen fluctuations occurring in warmer months. In the Chesapeake 

Bay, extensive summer oxygen depletions occur, decreasing the ability of the bay to 

support fisheries resources. From June 16 - August 21,1998, oxygen levels in the bay 

fell below 4 mg/L on 81% of the days and below 2 mg/L on 45% of the days. These 

oxygen depletions can come up rapidly, with levels dropping as much as 6mg/L in 4 

hours (Breitburg 1990). The Neuse River, NC, has been a site of numerous fish kills 

involving menhaden over the last 10 to 15 years. Paerl et al. (1998) reported dissolved 

oxygen levels below 5mg/L occurring over a 40km stretch of the Neuse River, NC, 

between May and November from 1994-1996 with levels below 2mg/L occurring over 

25km stretches of the river from July to September of those years. Indeed, the Neuse 

River experienced significant declines in dissolved oxygen over several summers and 

several of these hypoxic events resulted in large fish mortalities (Burkholder et al. 1995,
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Paerl et al. 1998). The Great Wicomico River, Virginia, has been the site of regular 

monitoring and has been known to experience hypoxic events as well as occurrences of 

lesioned menhaden (Kator, personal communication, January 29, 2002). In September 

2001, a fish kill occurred in the river. This was preceded in the week before by constant 

hypoxia in the bottom waters and some surface waters. The role of hypoxia in fish 

mortalities is certain however its role as an inducer of stress to fish skin is less clear.

Dissolved oxygen is essential for respiration and can play a role in fish diseases if 

present in either too high or too low a concentration. Fry (1969) believed that the 

reduction of the oxygen content of water is the most pressing source of stress for fish (in 

eutrophic lakes) and that almost all other stresses would be incidental to, or aggravated 

by that one primary stressor. The presumption is that at levels of oxygen below that 

required, fish will be expending excess energy to maintain homeostasis and will thus be 

experiencing physiological stress. Fish will adapt in any way they can to avoid hypoxia 

in their tissues (Heath 1995). Indeed, in Chesapeake Bay, fish actively avoid or flee from 

hypoxic areas and those caught in anoxic waters often breath air at the surface in an 

attempt to survive (Diaz et al. 1992).

The first line of defense against hypoxia is behavioral. Fish are mobile creatures 

and if possible, will move from the hypoxic area. If this is not possible, they will first try 

to adapt by lowering their energy demands. In order to maintain aerobic respiration, fish 

increase both their heart and ventilation rates (Burnett 1997) and this can lead to the 

GAS, as discussed previously. Plasma corticosteroid levels will increase (Tomasso et al. 

1981, Carmichael 1984), which can lead to (among other effects) decreased inflammatory 

response, ulcers, poor wound healing, increased blood glucose and poor antibody
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response to antigens (Neish 1980). Because the diffusion of oxygen into the blood 

stream is dependent on differences in partial pressures, there will be a concentration at 

which the fish will not be able to sustain uptake and the blood will cease to be fully 

oxygenated.

Hypoxia is an important and common cause of cell injury (Cotran et al. 1999). 

The exact cellular response to hypoxia depends on the cell and the severity and duration 

of exposure. As the oxygen within cells decrease, a loss of oxidative phosphorylation 

will occur, decreasing generation of ATP. This lack of ATP will result in cell swelling 

by allowing an influx of sodium into the cell, a switch to anaerobic glycolisis reducing 

glycogen stores, and disruption of protein synthesis. If the hypoxia continues, the cell 

will begin to lose its ultrastructural features and lysosome membranes will lose integrity 

causing leakage of enzymes into the cell leading to digestion of the cell and cell death 

(Cotran et al. 1999). Cellular injury can also occur when oxygen levels rise after a period 

of hypoxia, a phenomenon termed reperfusion injury. The sudden influx of oxygen into 

cells can result in oxygen free radical formation, further injuring cells that otherwise may 

have recovered from the hypoxia (Cotran et al. 1999, Law 2001).

Environmental hypoxia often is accompanied by high carbon dioxide levels, 

leading to low pH resulting in additional deleterious effects on the fish (Davis 1975).

Daye and Garside (1976) reported sloughing of squamous epithelial cells and 

hypertrophy and distortion of mucous cells due to low pH. Kiryu and Wakabayashi 

(1999) immersed fish in fluorescent microspheres for 5 min and found that they adhered 

to areas where microscopic injuries had occurred. This included swollen cells, necrotic 

or dead cells and cells with damaged membranes, all of which have been described as



www.manaraa.com

20
possible effects of hypoxia. These injuries represent the breakdown of the skin as a 

protective organ, allowing potential invasion of pathogens.

Structure of fish skin

Fish skin consists of four layers, the mucus coat, the epidermis, the dermis and the 

hypodermis (Gaines and Rogers 1975). It differs from vertebrate skin in that living 

epidermal cells are in direct contact with the environment, which subjects it to two types 

of stressors. The first is osmotic pressure gradients and the second is physical and 

chemical forces from the water itself and from other environmental hazards. The skin 

also represents the first line of defense against invasion by infectious microbial agents 

(Hawkes 1974).

The epidermis is a stratified squamous epithelium (Henrikson and Matolsty 

1968a), which contains many types of secretory glands such as goblet cells, club cells, 

and chloride cells, the most common of which are goblet cells. Underlying the epidermis 

is the dermis, which is composed of two layers of connective tissue, a loosely organized 

stratum spongiosum (or laxum) comprised of loose areolar connective tissue and a 

stratum compactum composed of dense connective tissue. The thickness and structure of 

the epidermis and dermis can vary with season, age and location on the body. Often a 

hypodermis of adipose tissue will underlie the dermis (Henrikson and Matolsty 1968b). 

When scales are present they are embedded in the dermis and extend towards the surface 

of the fish and are covered only by the epidermis (Gaines and Rogers 1975). Unless lost, 

the scale is a permanent structure that grows by the secretion of collagen and mineral 

accretion (Hawkes 1974).
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Fish skin performs three basic functions. It forms a smooth ffictionless surface 

reducing drag for locomotion, provides an impermeable physiological barrier to the 

movement of fluids and salts, and represents the first line of defense against invasion by 

infectious microbial agents. Hence, it is critically important in maintaining internal 

homeostasis and a major reason why skin damage in fishes often results in disease 

development and death, irrespective of other organ involvement (Noga et al. 1996).

The skin is one of the largest organs in any organism and in fish can account for 

up to 10% of the total body weight. Because it is unkeratinized and unhydrated it is very 

sensitive and a major target of acute and chronic damage (McKim and Lien 2001). Law

(2001) has evaluated the response of teleost epidermal cells in relation to injury in light 

of the lesions seen in menhaden, reporting a limited repertoire of morphological 

responses to injury. The four most vulnerable intracellular systems are cell membrane 

cohesion, mitochondrial respiration, protein synthesis, and genetic repair. Once 

irreversibly injured, the affected cells undergo death, including breakdown of the nuclei, 

lysis of endoplasmic reticula, membrane defects, and swollen mitochondria. The necrotic 

tissue will take on a different color and consistency and slough away to become an ulcer. 

Hypoxia can cause cellular injury leading to cellular death (Law 2001).

Summary

The lesions seen in menhaden are identical to those seen in EUS, which is caused 

by A. invadans. To date, EUS lesions have not been reproduced through aqueous 

exposures without an initial stressor. Callinan et al. (1994) reproduced lesions after 

exposure to acid runoff and lesions have been reproduced in numerous species through 

inoculation (Hatai et al. 1994, Chinabut et al. 1995, Wada et al. 1996, Catap and Munday
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1998, 2001). Aphanomyces invadans plays an integral role in the development of certain 

lesions in Atlantic menhaden (eg. Blazer et al. 2002, Kiryu et al. 2002,2003), however, 

further investigation is needed to elucidate whether Aphanomyces can be considered a 

primary pathogen.
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Chapter 2 -  Hypoxia and skin damage: Fast green studies 

Introduction

Biological stains are commonly used to stain internal structures in cells or tissues 

(Boon and Drijver 1986) as well as indicators of external features. For example, Kiryu 

and Wakabayashi (1999) used trypan blue to stain epidermal injury sites on rainbow 

trout. This dye has also been used by others (Elliot et al. 2001), but is not usually a first 

choice due to its carcinogenic nature. In experiments to document epidermal damage by 

various agents (Pfiesteria, abrasion, hypoxia), we have found trypan blue stains the skin 

of fish too lightly and thus exposure results are difficult to interpret (unpublished data). 

Another dye, fast green FCF, which is commonly used as a food dye has been used as an 

exclusion dye testing for viability of mammalian cells (Weisenthal et al. 1983, Glavin et 

al. 1996). Elliot et al. (2001) documented the use of fast green to indicate areas of 

epidermal damage on chinook salmon (Oncorhynchus tshawytscha). Fish with descaling 

injuries were exposed to 0.1% Fast green for 1-2 min, then rinsed for 1 min. The areas of 

injury were dyed green and were readily observable without the aid of microscopy. Elliot 

et al. (2001) stated that the fast green appeared to stain dead cells, as the color would 

disappear after closure of the epidermis and the sloughing of dead cells (12-96 h later). 

Regardless, these results indicate that fast green may be a useful indicator for recent skin 

damage.

23
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Fast green is widely used in histology as a counterstain (Conn 1953). It is known 

to stain proteins and plasma (among other components) and is related to the dye light 

green SF yellowish. Fast green is an acidic di-amino-triphenyl-methane derivative with 

a quinoid chromophore unit (Figure 5). The dye is soluble in both water and alcohol, 

with a maximum absorbency at 625nm (Conn 1953).

The goal of my study was to investigate the role of sublethal levels of oxygen as a 

stressor leading to epithelial damage. The null hypothesis (H0) was that hypoxia has no 

effect on the epidermal integrity of fishes. The alternative hypothesis (Hi) was that 

hypoxia does affect the epidermal integrity of fishes. This was analyzed using vital dyes 

following exposure to hypoxic conditions.

Methods

Fish collection and maintenance

Atlantic menhaden were collected by cast net from local tributaries of the York 

River and held in a flow-through system consisting of 950 L fiberglass troughs and 

filtered (35 Jim) water from the York River (salinity 20-24 psu, temperature 25-28°C). 

Fish were fed daily with an algal paste (Nannochloropsis, ~68 million/mL, 5 mL diluted 

in 1 L deionized water) mixture and several grams of HiPro 0.5GR Debut Corey Starter 

(Corey Feel Mills Ltd., New Brunswick, Canada).

Fast green studies

Fish (15-20 per tank) were held for 1 week in two 76L or two 206L glass aquaria 

containing artificial seawater (Marinemix Forty Fathoms, Marine Enterprises 

International, Inc., Baltimore, Maryland, 12 psu) at room temperature. Each tank was
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equipped with two Whisper filters (size C, Tetra/Second Nature, Tetra Sales USA, 

Blacksburg, Virginia) containing a filter bag filled with crushed coral (Bed Rock, Marine 

Enterprises International, Inc., Baltimore, Maryland) (biological filtration) and activated 

carbon. The larger tanks contained one canister filter (H.O.T. Magnum) with activated 

carbon. For each experiment, water filtration was suspended for 36 hours in both tanks. 

The water level was dropped to approximately % to V2 of the tank volume and the surface 

of one covered with styrofoam slabs to minimize air exchange. In this tank, dissolved 

oxygen was regulated at 30% air saturation using a Sable Systems Data Acquisition 

System (Datacan V) for 36 hours (Figure 6). The other tank was aerated continuously to 

remain at 90-100% saturation. The experiment was terminated by killing all fish with an 

overdose of MS-222.

Fish were carefully removed with forceps grasping either the tail or mouth and 

placed in 0.1% Fast Green FCF for 90 seconds then rinsed for 90 seconds. Areas that 

stained green indicated places where the epidermis of the fish had been compromised.

The lateral side of each fish was photographed with a 35mm camera using Kodak 200 

ASA color film, scanned and analyzed using an image analysis program (Image Pro Plus, 

Media Cybernetics, L.P.). After being photographed, a subsample of fish were processed 

for scanning electron microscopy (SEM) or histology (see below).

This was repeated four times on separate occasions.

Image analysis

The two dimensional surface area of the lateral side of each fish (including fins) 

was measured by tracing the fish’s profile using the Image Pro software. Color hues that 

were considered “positive” for fast green were visually selected, encircled with the
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software and assessed (Figure 7). Positive areas on the fins and head (defined as from the 

mouth to the edge of the gill operculum) were excluded from the count as these areas 

took up the stain regardless of treatment. The total area staining green was summed and 

a percentage of the affected surface area determined. This was done for each side of each 

experimental and control fish. Data for the two sides of the fish were then used to 

calculate a total percentage of the surface of the fish staining with fast green. Data were 

transformed using the square root -arcsin and evaluated for significance using a Student’s 

t-test ( a  = 0.05 significance level).

Fish were examined as to body region stained, using the method of Noga et al.

(1988). Region E (Figure 8) was not used, as this was the area of body not included in 

the data (mouth to edge of operculum). This analysis was done only with fish in the 

hypoxia treatments (n=48). Separate categories were not made for regions of stain 

encompassing more than one body region. For example, if a fish showed green staining 

in areas B and D and it seemed to be one large, continuous area, the fish was counted as 

staining in B and D rather that creating a separate category of B/D as did Noga et al. 

(1988).

SEM

Tissue from 19 fish in each treatment was fixed in 4% paraformaldehyde/5 % 

glutaraldehyde in 0.1 M sodium cacodylate buffer overnight at 4°C then washed 3 times 

for 30 min in 0.1 M sodium cacodylate buffer and stored at 4°C. Tissues were post-fixed 

in 1% osmium tetraoxide in 0.1 M sodium cacodylate for 1 hour then rinsed 3 times for 30 

minutes each in 0.1 M sodium cacodylate. Tissues were dehydrated in an ethanol series, 

critical point dried with carbon dioxide (Polaron E3100), sputter coated (Anatech
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Hummer VII) with gold palladium, and mounted on studs prior to storage in a dessicator. 

Both a Leo 435VP and an Amray 1810 scanning electron microscope were used to view 

the samples. A subsample of fish was fixed as above but 2% (w/v) alcian blue was added 

to the primary fixative to preserve the mucous coat (Powell et al. 1992).

In order to minimize damage in obtaining a tissue sample, a large section of the 

fish fixed in the primary fixative and a smaller sample of the epidermal layer excised 

with care prior to secondary fixation.

Histology

Seventeen fish from each treatment were fixed in 10% neutral buffered formalin. 

Tissues were decalcified with formic acid-sodium citrate solution, dehydrated with 

ethanol, embedded in paraffin, and blocks were sectioned transversely at 5pm with a 

rotary microtome. All slides were stained with Harris hematoxylin and eosin.

Other stains

The utility of other biological stains, Bismark brown and Alcian blue, was also 

examined. Bismark brown is a cytoplasmic dye while alcian blue stains 

mucopolysaccharides (Boon and Drijver 1986). The stains were tried in a small study 

with few fish. Fish were treated identically to the studies above. During one experiment, 

6 fish from each treatment were selected and placed in 0.1% bismark brown for 3 minutes 

then rinsed for 60 seconds. A second subset of 5 fish was removed from each treatment 

and placed in 0.05% alcian blue for 3 minutes and rinsed for 60 seconds. Each side of 

every fish was photographed.
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Results

Image analysis

In experiments 1,2 and 4, the percentage of surface area that was stained by fast 

green was significantly greater in fish exposed to hypoxia than in controls (individual t- 

tests, p<0.01 for all). The only experiment in which this was not the case was the third 

experiment (t-test, p>0.05), which had a small sample size (n=6 per treatment). When 

data from all 4 experiments were combined, those fish exposed to hypoxia were stained 

significantly more than control fish (t-test, p<0.001). Between experiments, control 

treatments were not significantly different from one another (ANOVA, p>0.05) 

demonstrating that regardless of the experiment, all control fish did not stain or stained 

very slightly. On the other hand, the proportion of fish taking up the stain in the hypoxia 

treatment were found significantly different from each other indicating significant inter 

experimental variability (ANOVA, p<0.01). This was not size related (linear regression, 

r2 = 0.21, n=48). Fish exposed to hypoxia most often stained in area B, medial ventral 

and area D, posterior ventral (Figure 9).
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Figure 1. Average percentage of surface area staining with fast green FCF in both 
treatments for all experiments. Error bars are standard deviations.
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Table 1. Area of body staining with fast green in fish exposed to hypoxia

Area of body Percentage of fish showing 
staining in that area

A 27%

B 58%

C 19%

D 75%

E Not included

SEM

Of the 38 fish (19 each treatment) examined, no ultrastructural differences were 

seen in the epidermis of fish from control and hypoxia treatments. The specimens were
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often difficult to handle because of their fragility and size, which created an uneven 

charging. Addition of alcian blue to the primary fixative did not aid in preservation of 

the surface ultrastructure.

Histology

No differences were seen histologically in the epidermis of fish in control and 

hypoxia treatments (17 fish per treatment). In most slides, the epidermis pulled away 

from the tissue during sectioning and artifacts were too numerous to fully realize any 

subtle changes in the epidermis.

Other stains

No obvious visual differences were seen between fish in control and hypoxia 

treatments when stained with bismark brown (Figure 10). Fish stained with alcian blue 

did appear to stain differently. Control fish had a greater surface area stained then did 

those exposed to hypoxic conditions (Figure 10), possibly indicating a loss of mucous 

coat in fish in the hypoxia treatment. Image analysis was not done on the photographs 

due to the small sample size (n = 5).

Discussion

Despite the lack of ultrastuctural evidence, the results obtained with fast green 

staining alone indicated an effect of hypoxia on the skin of menhaden. Since fast green 

stains recently dead skin cells (Weisenthal et al. 1983), the results indicate that the 

epidermis of menhaden is compromised by exposure to hypoxia. Elliot et al. (2001) 

reported that once dead skin cells are sloughed and the damage repaired, the area no 

longer stains with fast green. This may indicated a breach of epidermal integrity, and
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could provide a means for oomycete penetration and may also aid zoospores of A. 

invadans in locating host fish through chemotaxis (Andersson 2001, Kiryu et al. 2003).

Menhaden in hypoxia treatments stained most often in the lower body and 

posterior flank region (Table 1). This pattern is consistent or reflected in lesionous fish 

from the field. Noga and Dykstra (1988) examined 424 menhaden with lesions and 

found 79% of the lesions occurring in these same areas. The cause behind the majority of 

menhaden developing lesions in this body region is unknown (Dykstra and Kane 2000). 

The thickness and structure of the epidermal layer can vary seasonally, with age and with 

location on the body (Gaines and Rogers 1975) and this area may be more susceptible to 

damage. Lesion prevalence has been shown to increase in menhaden when abraded with 

a net prior to zoospore exposure (100% vs. 34% for unstressed fish, Kiryu et al. 2002) 

and Kiryu et al. (2002) indicated that other mechanisms, such as external parasites, P. 

piscicida, or environmental stressors such as hypoxia could mimic this effect, enhancing 

the infectivity and lesion severity in menhaden exposed to A. invadans. The staining 

pattern of fish exposed to hypoxia suggests that hypoxia may cause a subtle portal of 

entry. In the wild, this may enhance infectivity by A. invadans, allowing initiation of 

lesions.

Environmental stress increases susceptibility to disease (Snieszko 1974), however 

little is known of the exact pathological consequences of possible stressors, particularly 

with hypoxia. Scott and Rogers (1980) found hemorrhaging and hyperemia throughout 

the liver, spleen and kidney of channel catfish exposed to hypoxia, but did not examine 

the epidermis. Plumb et al. (1976) also examined channel catfish after exposure to 

anoxic conditions and reported hemorrhaging in the dermis and hypodermis while
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Drewett and Abel (1983) reported breaks in the gill epithelium from brown trout exposed 

to hypoxic conditions. Plumb et al. (1976) also reported the occurrence of epidermal 

lesions with no apparent etiologic agent.

Preliminary evidence from alcian blue staining suggests that fish exposed to 

hypoxic conditions may also experience a depletion of their mucous coat. This could 

further aid zoospores in attachment and penetration of the epidermis. The mucous layer 

of fish serves three functions: to reduce body friction, to regulate osmostic action at the 

surface of the skin and to protect the body from attack by pathogens. The mucous coat 

provides protection by preventing the attachment of microbes through continuous 

sloughing (Oosten 1957), acting as a barrier if attachment of a microbe occurs and 

through a variety a humoral immune factors (Bole et al. 2001) such as agglutins and 

lysins (Ingram 1980). The staining pattern of the fast green, coupled with the potential 

loss of mucous coat indicated by alcian blue staining suggests that hypoxia may be 

enough of a stressor to cause a loss of the initial defense mechanisms of Atlantic 

menhaden.

The mucous coat, along with the epidermal layer, provide the first line of defense 

against pathogens and the amount of mucous and epidermal thickness may play a role in 

the ability of the fish to resist disease (Fast et al. 2002). Fish have the ability to alter the 

amount of mucous secreted (Ingram 1980) and this, along with epidermal thickness may 

be altered by exposure to stressors. Iger et al. (1994) reported thinning epidermis in trout 

exposed to increased temperatures and depressed areas were present where pavement 

cells had been shed. Because the epidermis of fish is unkeratinized and hydrated, it is 

very susceptible to any stressor. The first response of the skin is to release copious
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amounts of mucous. However, as this continues, the number of mucous cells in the 

epidermis decreases and the epidermis becomes thinner (Iger and Abraham 1990). If 

enough energy is available, the skin will compensate, cycling new mucous cells and 

thickening the epidermal layer (McKim and Lien 2001).

Under stressful conditions, especially hypoxia, available energy is reduced and 

fish may not be able to compensate for the epidermal changes, increasing susceptibility to 

pathogens. Decreased mucous had been thought to contribute to the attachment and 

germination of Saprolegnia spp. on channel catfish exposed to low temperatures 

(Quiniou et al. 1997). The staining results of this study indicate that during exposure to 

hypoxia, Atlantic menhaden may experience a loss of their mucous coat and possible 

hypoxic injuries to the epidermal cells. This may play a role in increased prevalence of 

disease, including ulcerative mycosis by providing an easy means for zoospore 

attachment, as well as providing a portal of entry into the dermis of the fish.
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Chapter 3 -  Hypoxia and zoospore bath exposures

Introduction

As recently as 2001, Pfiesteria, was considered the cause of lesions in menhaden 

and Aphanomyces an opportunistic invader of these lesions (Burkholder and Glasgow 

1997, Burkholder et al. 2001). Superficial loss of epidermis has been reported in 

laboratory exposures of fish to Pfiesteria, however, the deeply penetrating lesions 

observed in wild menhaden have not been reproduced by experimental exposure to 

Pfiesteria (Noga et al. 1996, Vogelbein et al. 2001). This brings into question the role of 

Pfiesteria as an etiologic agent. Fish with lesions and massive fish kills have also been 

observed in water where no Pfiesteria has been reported (Dykstra and Kane 2000) and 

these lesions consistently show an intense granulomatous inflammation associated with 

invasive hyphae of Aphanomyces (Blazer et al. 1999).

The lesions seen in menhaden are identical to those seen in EUS, which have been 

successfully reproduced in laboratory injection studies in snakehead (Roberts et al. 1993, 

Chinabut et al. 1995, Lilley and Roberts 1997), gourami (Colisa Ialia) (Hatai et al. 1994), 

rosy barbs (Puntius schwanefeldi) (Khan et al. 1998) and ayu (Wada et al. 1996). 

However, early attempts to isolate the water mold from and reproduce lesions in 

menhaden were inconclusive. Kiryu et al. (2002,2003) have recently shown that lesions 

can be induced by injection of fish with hyphae or secondary zoospores and bath 

exposure to zoospores of Aphanomyces. In addition, fish that experienced trauma (net

34
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stress) before the bath exposure to the water mold developed a much higher prevalence of 

lesions than untraumatized fish (100% vs. 22%, respectively). While the trauma due to 

the net stress is unlikely to be seen in the environment, it demonstrates that damage to the 

epithelium facilitates infection by the oomycete. Similar cellular damage may occur 

from other sources of environmental stress, such as hypoxia, thus, creating a portal of 

entry for the zoospores and their further development into lesions in fish.

The goal of this chapter was to assess the relationship between hypoxia and the 

water mold Aphanomyces in the etiology of the lesions seen in menhaden. The null 

hypothesis (H0) was that hypoxia was not involved in the etiology of lesions (ie. did not 

create a portal of entry). The alternate hypothesis (Hi) was that hypoxia is involved in 

the etiology of lesions, presumably by effecting skin damage and, thus, allowing a portal 

of entry for A. invadans. This was evaluated through infection trials with menhaden 

exposed to zoospores of A. invadans and low dissolved oxygen levels in different 

combinations of exposures.

Methods

Fish collection and maintenance

Atlantic menhaden were collected by cast net from local tributaries of the York 

River and held in a flow-through system consisting of 950 L fiberglass troughs and 

filtered (35 pm) water from the York River (salinity 20-24 psu, temperature 25-28°C).

Fish were fed daily with an algal paste (Nannochloropsis, ~68 million/mL, 5 mL diluted 

in 1 L deionized water) mixture and several grams of HiPro 0.5GR Debut Corey Starter 

(Corey Feel Mills Ltd., New Brunswick, Canada).
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Aphanomyces invadans culture and sporulation

An endemic isolate of Aphanomyces invadans from an isolated menhaden in 

Maryland (WIC strain, Blazer et al. 1999) was used in all infection trials. This isolate was 

routinely maintained on glucose peptone-pencillin-oxolinic acid agar (GP-POX agar, 

Willoughby and Roberts 1994, Lilley et al. 1998) for 5-7 days and sub-cultured into GP- 

POX broth for 3-4 weeks at room temperature.

For zoospore production, batch cultures were generated by taking 8 pieces of agar 

(6 mm in diameter) containing hyphae from the growing edge of a colony and placing 

them in GP-POX broth in a 250 mL culture flask (Becton Dickinson Labware, Flankline 

Lakes, New Jersey). These cultures were grown for 10-14 days and used to inoculate 

glucose-peptone-yeast (GPY) agar plates (Lilley et al. 1998). The plates were grown for 

4, 5 or 6 days at 23°C in complete darkness. Plugs of agar (6mm in diameter) were then 

taken and each plug inoculated into a 25 mL culture flask with 25mL GPY broth. These 

cultures were allowed to grow for 5, 6 or 7 days at 23°C in complete darkness. To induce 

sporulation, cultures were washed three times then suspended and incubated in 

autoclaved water from the Poropotank River, Virginia, augmented to 1 psu at room 

temperature (~23°C). Cultures were then placed at 23°C in complete darkness for 36 

hours. Numerous (150-200) flasks were prepared. After induction of sporulation, 

cultures and water containing zoospores were combined in a large culture flask for aid of 

counting and exposure. Zoospore densities were estimated with the aid of a 

hemacytometer (Neubauer/Bright-Line, Buffalo, New York). Briefly, an aliquot of 

culture was preserved in 10% neutral buffered formalin (1 culture:5 fixative), centrifuged
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for 10 minutes at 850 ref, 1.8 mL of the supernatant removed, the pellet resuspended and 

a 10 jiL aliquot counted with the hemacytometer.

Zoospore bath exposure

Fish (~20 per tank), averaging 7.3 cm standard length (4.2-10.0 cm) and 6.8 g 

(1.1-15.5 g), were held for 2 weeks in ten 76 L glass aquaria containing artificial seawater 

(Marinemix Forty Fathoms, Marine Enterprises International, Inc., Baltimore, Maryland) 

at room temperature. Each tank was equipped with two Whisper filters (size C, 

Tetra/Second Nature, Tetra Sales USA, Blacksburg, Virginia) containing a filter bag 

filled with crushed coral (Bed Rock, Marine Enterprises International, Inc., Baltimore, 

Maryland) (biological filtration) and activated carbon. For all tanks, salinity was lowered 

from 16 psu to 6 psu over one week and the fish were held at 6 psu for at least one week 

prior to bath exposures. Water quality was checked weekly (NH3 , NO2 and pH) and 25% 

water changes were made as needed to keep water quality parameters within acceptable 

limits.

The ten tanks were divided into 5 treatments (2 replicate tanks per treatment): 1) 

no hypoxia, no oomycetes, 2) no hypoxia, oomycetes, 3) hypoxia, no oomycetes, 4) 

hypoxia, oomycetes and 5) net stress, oomycetes (Table 1). Treatments 2 and 4 were 

experimental treatments to elucidate whether hypoxia played a role in the development of 

lesions. All other treatments were controls. Treatment 1 served as an overall control 

while treatment 3 was a negative control, demonstrating the effect of hypoxia alone and 

treatment 5 served as a positive control to confirm that the oomycetes were indeed 

infectious, as fish in treatment 5 should develop lesions after Kiryu et al. (2002).
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Table 2. Experimental design for bath challenges with hypoxia

Treatment Stressor Oomycete
zoospores?

Type of treatement

1 None No Control

2 None Yes Experimental

3 Hypoxia No Negative control

4 Hypoxia Yes Experimental

5 Net Yes Positive control

In all treatments, water filtration was suspended 36 hours prior to bath exposure 

and the water level dropped to Vi tank volume. In hypoxia treatments, the water surface 

was covered with styrofoam slabs to minimize air exchange. In hypoxia tanks, dissolved 

oxygen was regulated at 30% air saturation (~2-3 mg/L) using a Sable Systems Data 

Acquisition System (Datacan V, Figure 6) for 36 hours prior to bath exposure. All other 

treatments were continuously aerated to remain at 90-100% saturation. For the exposure, 

the water level of all tanks was augmented to 30 L at a salinity of 1 psu with continuous 

aeration. For treatment 5 (net stress), the fish were captured 3-4 at a time and held in a 

net for 20 seconds then moved to a new aquarium under identical conditions prior to 

zoospores being added. For all oomycete exposures, zoospores were added to the aquaria 

to give an estimated concentration of 100 zoospores mL'1. For control treatments with no 

zoospores, sterile Poropotank River water (1 psu) was added. Fish were exposed to 

zoospores for 6 hours. Exposure was terminated by adding 12 psu ASW to each tank to 

raise the salinity to 6 psu, which inhibited secondary zoospore motility (Kiryu et al. 

unpublished data, Blazer et al. 2002). Fish that died during the exposure were eliminated 

from the experiment and the remaining fish in all treatments were monitored for 28 days.
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Plate recovery was done on flasks of zoospores added to confirm viability. GP-POX agar 

plates were inoculated with 0.1 mL of the zoospore suspension and monitored for 5 days 

for colony growth.

Gross examination and data collection

Aquaria were monitored daily and all dead and moribund fish removed. These 

fish were weighed, measured, examined for gross pathology and some were 

photographed. For those fish displaying lesions, the size and location of the lesions was 

recorded and photographs taken. While the development of lesions was the primary 

endpoint, mortality data were also taken.

Results

The fungus-hypoxia experiment was attempted a total of eight times. The first 6 

attempts failed due to unexplained fish mortalities, error regulating dissolved oxygen 

concentrations or failed sporulation events. Most recently, the experiment was conducted 

twice with minimal results (Table 3). In attempt 7, lesions were observed on fish in each 

zoospore treatment but lesions prevalence was very low, even in positive control 

treatments with no difference between experimental treatments (x , p=0.99). Plate 

recovery for both experiments was good, confirming zoospore viability.
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Table 3. Results from aqueous exposures to zoospores of A. invadans in combination 
with hypoxia.

Attempt 7 Attempt 8

Treatment
lesions

mortality
w/out
lesions

mortality
w/lesions lesions

mortality
w/out
lesions

mortality
w/lesions

Net stress (3/20)
15.0%

(4/20)
20.0%

(2/20)
10.0%

(1/4)
25.0%

(2/4)
50.0%

(1/4)
25.0%

Oomycete
only

(2/26)
7.7%

(9/26)
34.6%

(2/26)
7.7%

(0/32)
0.0%

(9/32)
28.1%

(0/32)
0.0%

Control (0/24)
0.0%

(5/24)
20.8%

(0/24)
0.0%

(0/31)
0.0%

(9/31)
29.0%

(0/31)
0.0%

Hypoxia
only

(0/49)
0.0%

(24/49)
49.0%

(0/49)
0.0%

(0/43)
0.0%

(7/43)
16.3%

(0/43)
0.0%

Oomycete
and

Hypoxia

(1/39)
2.6%

(12/39)
30.7%

(1/39)
2.6%

(0/40)
0.0%

(12/40)
30%

(0/40)
0.0%

Discussion

The WIC strain of A. invadans was pathogenic, and capable of infecting 

seemingly healthy menhaden, but the stress of hypoxia did not increase the prevalence of 

lesions in experimental exposures. Kiryu et al. (2002) has reported 100% prevalence of 

lesions on net stressed fish exposed to a zoospore concentration of 70/mL for 2 hours and 

32% prevalence on untraumatized fish exposed to zoospore concentrations of 110/mL for 

5.5 hours. I was unable to confirm significant development of lesions in bath challenges. 

The failure of the net stress treatment as the positive control did not allow the data to be 

evaluated in light of the hypothesis made. A. invadans was capable of initiating lesions 

in Atlantic menhaden (Figure 11) but not at levels reported recently (Kiryu et al. 2002, 

2003).
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Factors such as temperature, pH and salinity have been reported to affect EUS 

outbreaks. Low temperatures are thought to result in stress, inhibiting the ability of the 

fish to contain and inactivate A. invadans. Acidified water run off and organic matter 

resulting in low oxygen are both thought to cause areas of epidermal necrosis in fish, 

allowing colonization by A. invadans, though this has not been demonstrating 

conclusively. EUS and UM can only occur when susceptible fish, infective forms of the 

fungus and suitable environmental conditions are all present (Lilley et al. 1998). The 

epidermal damage resulting from hypoxia exposure, as shown in Chapter 2, should 

provide a portal of entry for oomycete zoospores to penetrate into the dermis, initiating 

lesions when all other conditions are conducive to lesion development.

WIC was induced to sporulate and plate recovery confirmed zoospore viability, 

however, the ability to produce zoospores may not be related to the ability of an isolate to 

infect hosts. Bratner and Windels (2000) isolated sixteen strains of Aphanomyces 

cochlioides and assayed them for zoospore production and ability to infect sugar beets 

(Beta vulgaris). Isolates varied widely in zoospore production but more surprisingly, no 

correlation was found between amount of zoospore production and pathogenicity or 

transmission. Those isolates producing large numbers of zoospores were not always able 

to initiate root rot in sugar beets, even with large doses of 200,000 zoospores/plant. 

Confirming zoospore viability of an isolate or selecting flasks with greater sporulation 

may not yield consistent results in lesion initiation. This could account for variability 

seen between experimental challenges with the same strain.

Andersson (2001) described the steps that must be taken by a fungal or oomycete 

pathogen for infection to occur in the host. Relating these steps to secondary zoospores
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of A. invadans, the zoospore must find and adhere to the surface of the host, then 

germinate and penetrate host barriers. This may be aided by the presence of a wound as 

in crayfish (Dieguez-Uribeondo et al. 1994 in Andersson 2001); invasion by A. euteiches 

occurs most often at joints, wounds and body openings (Nylen and Unestam 1980). The 

WIC strain of A. invadans may have lost its infectivity. This has been reported in A. 

euteiches after a year in culture (Fitzpatrick et al. 1998) and has been hypothesized to 

occur in A. invadans by Lilley et al. (2001). The WIC strain of A. invadans has been in 

culture for 3 years now with these exposures occurring 1-2 years after those by Kiryu et 

al. (2002), who used the same culture. Other aquatic fungi have been reported to secrete 

a self-staling substance after repeated sub-culturing in liquid media (Willoughby and 

Chinabut 1996). A similar phenomenon may occur in A  invadans, affecting the 

oomycete’s infectivity. Repeated sub-culturing has also been reported to reduce 

virulence in Aphanomyces spp. (Blazer et al. 2002) and given the length of time in culture 

and repeated sub-culturing, reduced virulence may explain our results.
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Chapter 4 - Investigations into the sporulation of A. invadans 

Introduction

Ulcerative lesions have been reproduced in fish through injection of both the 

hyphae (Roberts et al. 1993, Blazer et al. 2002) and zoospores (Fraser et al. 1992, Lilley 

and Roberts 1997, Catap and Munday 1998, Kiryu et al. 2002) of Aphanomyces spp. 

Callinan et al. (1996) reproduced lesions through bath challenges following exposure to 

acidified water and more recently, Kiryu et al. (2002, 2003) reproduced lesions in 

Atlantic menhaden though bath challenges in 38 L aquaria. The free-swimming 

infectious stage of Aphanomyces spp. is the secondary zoospore. After finding a suitable 

host or medium, the zoospores encyst. A hypha will penetrate into the dermis of the fish, 

allowing the oomycete to invade into deeper tissue.

Sporulation methods have been published for Aphanomyces invadans (Chinabut 

et al. 1995, Lilley et al. 1998, Catap and Munday 1998, 2002, Sihalath 1999) though 

almost always on a small scale designed for injection trials. Most methods involve 

growing the fungus on agar for a few days then transferring the culture to a broth medium 

for a few days. The culture is then washed with autoclaved pond water and sporulation 

occurs after 24 to 36 hours. Most cultures are grown in small petri dishes with no more 

than 25 mL of media. The method of washing and number of washes with water usually 

varies between authors, as does the water source. For bath challenges with menhaden, I 

needed to produce large numbers of zoospores and followed the methods of Kiryu et al.

43
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(2002) who were able to produce zoospores in 500 mL volumes. However, attempts to 

"batch" sporulate large numbers of zoospores of Aphanomyces yielded highly variable 

results. Thus, the purpose of the following sets of experiments was to elucidate the 

optimal conditions for the batch sporulation of Aphanomyces invadans; that is, to derive a 

method to consistently produce large numbers of zoospores in larger volumes than 25 ml. 

The factors investigated included (1) water source used to induce sporulation, (2) volume 

of media (in effect surface area to volume), (3) number of rinses with the water, (4) 

temperature, (5) type of growth media, (6) number of agar plugs as a crowding effect and 

(7) light cycle.

Methods

Three separate oomycete strains were used: WIC (an endemic isolate of 

Aphanomyces invadans from a menhaden in Maryland; Blazer et al. 1999), ATCC 

(American Type Culture Collection 62427) and PA7 (an isolate of A. invadans from 

striped snakehead from Nonthaburi, Thailand, Lilley and Roberts 1997). The ATCC 

strain was once thought to be A. invadans, but is now known to be different based on 16S 

rDNA sequence analysis (Kator, personal communication, January 29,2002). All strains 

were routinely maintained on glucose-peptone-oxolinic acid agar (GP-POX agar, 

Willoughby and Roberts 1994, Lilley et al. 1998) for 5-7 days and subcultured into GP- 

POX broth for 3-4 weeks at room temperature. Sporulation of zoospores was evaluated 

on a semi-quantitative scale of 0-3 (Sihalath 1999) using an inverted microscope 

(Olympus 1X50, Tokyo, Japan). A score of 0 indicated no zoospores were seen in the 

microscope field, a score of 1 indicated 1-10 zoospores were seen, a score of 2 indicated
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11-100 zoospores were seen and a score of 3 indicated greater than 100 zoospores were 

seen.

For all experiments described below, agar plates containing specified media were 

inoculated from the routine cultures and allowed to grow for 5 days in the conditions 

previously described. Plugs of agar, 6 mm in diameter, were taken from the growing 

edge of the colony and placed in culture flasks with broth and allowed to grow for 4 days 

before undergoing sporulation as previously described.

Experiment 1 - Effect of sporulation media

The WIC strain of the water mold was grown with GP-POX media at room 

temperature. One agar plug was placed into each of fifteen 25 mL culture flasks (Becton 

Dickinson Labware, Flankline Lakes, New Jersey) and the flasks were divided into three 

groups of 5. Group 1 was sporulated using 0.45 J im  filtered, autoclaved water from the 

Poropotank River, Virginia, augmented to 1 psu at room temperature. Group 2 was 

sporulated using 0.45 jim filtered, autoclaved water from the Beaverdam Reservoir, 

Virginia, augmented to 1 psu at room temperature. Group 3 was sporulated using a 

sporulation medium of sterilized 0.25 mM CaCl2 and 0.25 mM KC1 in deionized water 

(Griffin 1978). To induce sporulation, cultures were washed by carefully pouring out all 

growth media so not to lose the hyphal mat and pipetting 20-25 mL of the appropriate 

water into the flask. The flasks were carefully inverted and moved side to side to wash 

all growth media out of the flask and the water was carefully poured out. This was done 

three times, the hyphae were resuspended and incubated in the water at room 

temperature. Cultures were evaluated at 24, 36, 60, 72 and 96 hours after sporulation.

The null hypothesis (H0) was that no difference would be seen in sporulation between
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water sources, the alternate hypothesis (Hi) was that a difference would be seen in 

sporulation between water sources.

Experiment 2 - Effect of volume of media

The WIC strain of the water mold was grown using GP-POX media at room 

temperature. A total of 20 flasks were prepared in 5 groups of 4 as shown below.

Table 4. Sporulation experiment 2 - Effect of media volume and plug number on 
sporulation

Group Surface area Volume # plugs Volume per

1 12.5 cm2 25 mL 1 25 mL

2 25 cm2 70 mL 2 35 mL

3 75 cm2 250 mL 8 31.3 mL

4 150 cm2 600 mL 10 60 mL

5 150 cm2 600 mL 20 30 mL

All groups were sporulated by washing cultures 3 times then resuspending and incubating 

them using 0.45 pm-filtered, autoclaved water from the Poropotank River, Virginia, 

augmented to 1 psu at room temperature. Cultures were evaluated at 24, 36, 60, 72 and 

96 hours after sporulation. The null hypothesis (H0) was that volume of media would not 

affect sporulation. The alternate hypothesis (Hi) was that volume of media would affect 

sporulation. The ratio between the volume of the media was kept relatively constant in 

relation to the number of inoculum plugs so to control for potential differences in staling 

factors that could stall sporulation.

Experiment 3 - Effect of number of washings

The WIC strain of the water mold was grown with GP-POX media at room 

temperature. One agar plug was placed into each of twelve 25 mL culture flasks and the
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flasks divided into three groups of 4 replicates. Sporulation was induced by washing 

cultures then suspending and incubating them using 0.45-jim filtered, autoclaved water 

from the Poropotank River, Virginia, augmented to 1 psu at room temperature. Group 1 

was washed once, group 2 twice and group 3 three times before being resuspended in 

water. Flasks were evaluated at 24, 36, 60, 72 and 96 hours after sporulation. The null 

hypothesis (Hc) was that sporulation would not be affected by the number of washes in 

sporulation medium. The alternate hypothesis (Hi) was that sporulation would be 

affected by the number of washes in sporulation medium.

Experiment 4 - Effect of temperature on sporulation between strains

WIC, ATCC and PA7 were grown using GP-POX media at room temperature and 

lagar plug was placed into each of 152 culture flasks (25 mL) and the flasks divided into 

19 groups of 8 replicates. Sporulation was induced by washing cultures two times then 

suspending and incubating them using 0.45-|Lim filtered, autoclaved water from the 

Poropotank River, Virginia, augmented to 1 psu at room temperature. Each strain was 

incubated at 10°C, 15°C, 20°C, room temp (23°C), 30°C and 35°C, with ATCC being 

placed at 4°C as well. Flasks were evaluated at 24,48, 72 and 96 hours after sporulation. 

The null hypothesis (H0) was that temperature would have no affect on sporulation and 

that sporulation would not differ between strains. The alternate hypothesis (Hi) was that 

temperature would affect sporulation and that sporulation would differ between strains. 

Experiment 5 - Effect of growth media

WIC and PA7 strains were grown with either GP-POX, glucose-peptone-yeast 

(GPY) or glucose-peptone (GP) (Lilley 1998) media at room temperature. Each strain 

was grown using each media with 1 plug placed into 25 mL of media. Each media/strain
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combination contained 4 replicates. Sporulation was induced by washing cultures two 

times then suspending and incubating them using 0.45 jam-filtered, autoclaved water 

from the Poropotank River, Virginia, augmented to 1 psu at room temperature. Cultures 

were evaluated every 24 hours for 5 days after sporulation. The null hypothesis (H0) was 

that sporulation would not be affected by growth media. The alternate hypothesis (Hi) 

that sporulation would be affected by growth media.

Experiment 6 - Effect of growth media and crowding

WIC strain fungus was grown using both GP-POX and GPY media at room 

temperature. Flasks were prepared as shown below. The ratio between the volume of the 

media and the number of inoculum plugs was varied to examine for potential differences 

in staling factors that could stall sporulation.

Table 5. Sporulation experiment 6 -  The effect of growth media and crowding on 
sporulation in various size flasks.

Surface area Media volume # plugs volume per plug

12.5 cm2 25 mL 1 25 mL

12.5 cm2 25 mL 3 8.3 mL

25 cm2 70 mL 1 70.0 mL

25 cm2 70 mL 6 11.6 mL

75 cm2 250 mL 1 250 mL

75 cm2 250 mL 6 25 mL

75 cm2 250 mL 9 27.8 mL

Each treatment consisted of four replicates for each medium. Sporulation was induced by 

washing cultures two times then suspending and incubating them in 0.45 pm filtered, 

autoclaved water from the Poropotank River, Virginia, augmented to 1 psu at room
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temperature. Flasks were evaluated at 24,48 and 72 hours after sporulation. The null 

hypothesis (H0) was that growth media, media volume and plug number would have no 

affect on sporulation. The alternate hypothesis (Hi) was that growth media, media 

volume and plug number would affect sporulation.

Experiment 7 - Effect of light cycle

The WIC strain of the water mold was grown using GP-POX and GPY media at 

room temperature. Both 25 mL and 250 mL volumes of media were used; with 1 plug of 

agar being placed in the 25 mL flasks and 6 in the 250 mL flasks. Each media/volume 

combination was sporulated then placed in either complete darkness or on a 12h light: 12h 

dark schedule at 23°C. Each treatment contained 4 flasks. Sporulation was induced by 

washing cultures three times then suspending and incubating them in 0.45 pm filtered, 

autoclaved water from the Poropotank River, Virginia, augmented to 1 psu at room 

temperature. Flasks were evaluated at 24, 36,48 and 60 hours after sporulation. The null 

hypothesis (H0) was that light cycle would play no role in sporulation with the alternate 

hypothesis (Hi) that sporulation would be affected by the light cycle.

Results

Experiment 1- Effect of sporulation media

Water from both the Poropotank River and Beaverdam Reservoir yielded good 

sporulation. After 36 hours, all cultures had a score of 3. The sporulation medium 

induced poor sporulation, with few to no zoospores seen in each flask.
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Experiment 2 - Effect of volume of media

Large volumes of media significantly decreased sporulation (ANOVA, p<0.01) 

with no sporulation occurring in 250 mL and 600 mL volume (Table 6). Mycelial growth 

was not quantified, but dense hyphal mats were observed in all cultures prior to 

sporulation. Smaller volumes supported better sporulation.

Table 6. Results from experiment 2 -  Effect of media volume on sporulation.

Experimental treatm ent Average sporulation score at 
36 hours with SD

25 mL, 1 plug 2.5 ± 0.6

70 mL, 2 plugs 1.5 ±1.2

250 mL, 8 plugs 0

600 mL, 10 plugs 0

600 mL, 20 plugs 0

Experiment 3 - Effect of number of washings

The number of washes significantly affected sporulation of cultures (ANOVA, 

p=0.036). Cultures that received either 2 or 3 washes sporulated with scores of 3 after 36 

hours. Cultures receiving 3 washes sporulated early, reaching a score of 3 after only 24 

hours and continuing throughout the duration of the experiment. Cultures washed once 

sporulated significantly less than other treatments with an average score of 2 after 36 

hours.

Experiment 4 - Effect of temperature on sporulation between strains

As expected, temperature affected sporulation and differentially affected each 

strain. The ATCC strain sporulated poorly and only at 20°C with an average score of 0.5.
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WIC sporulated well at 20°C and 23°C whereas the PA7 culture did not produce copious 

numbers of zoospores except at 23° (Figure 2).

Figure 2. Results showing effect of temperature on sporulation. Data shown is 
average sporulation score of flasks at 48 hours. Error bars are standard deviation.

PA7
■ --•W IC2.5 -

Temperature (C)

Experiment 5 - Effect of growth media

Both strain and media significantly affected sporulation (ANOVA, p=0.005) with 

WIC sporulating better than PA7. Two one-way ANOVAs were done within each strain 

to compare growth media. Growth media did not have a significant effect on sporulation 

of PA7 (p=0.64), but did significantly effect sporulation of the WIC strain (p=0.036) with 

GP-POX supporting significantly more sporulation than GP media alone (Tukey’s HSD, 

p=0.032).
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Strain
Average sporulation score at 48 hours with SD

GP-POX GPY GP

PA7 0.3 ±0.5 0.3 ±0.5 0

WIC 1.8 ±1.0 0.8 ±0.5 0.3 ± 0.5

Experiment 6 -  Effect of growth media and crowding

Growth media, media volume and the number of inoculum plugs all had 

significant effects on sporulation (ANOVA, p<0.05, Table 9). The treatments supporting 

the greatest sporulation occurred in 25 mL of GPY media and 70 mL of GP-POX, both 

with only one plug (Table 8). Paradoxically, sporulation occurred in the 250 mL flasks, 

whereas in Experiment 2, no sporulation occurred in what was essentially an identical 

treatment. The number of inoculum plugs was a signficant factor when analyzed in 

relation to the volume of media (Table 9, nested ANOVA), but the volume of the media 

appeared to be the largest factor affecting sporulation, with smaller volumes supporting 

greater spoulation.

Table 8. Effect of growth media and crowding on sporulation

Treatment
Average sporulation score at 48 hours with SD

GP-POX GPY
25 mL, 1 plug 1.0 ±0.8 2.5 ±0.6

25 mL, 3 plugs 1.0 ±0.0 1.5 ±1.0

70 mL, 1 plug 3.0 ±0.0 1.3 ±0.5

70 mL, 6 plugs 1.3 ±0.5 1.5 ±0.6

250 mL, normal 1 plug 0 0

250 mL, normal 6 plugs 0.3 ±0.5 2.0 ±0.8

250 mL, normal, 9 plugs 0.6 ± 0.6 1.8 ±0.5
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Table 9. ANOVA table showing the effect of growth, media and crowding on 
sporulation

_ t
■

0

Source Sum of 
Squares df Mean-

Square F-ratio P

Medium 2.302 1 2.302 5.217 0.027

Volume *Medium 7.193 2 3.596 8.152 0.001

Volume (Plugs) 18.902 3 6.301 14.281 0.000

Error 20.763 47 0.441

Experiment 7 - Effect of light cvcle

A three way ANOVA was done comparing media volume, media and light cycle. 

Media volume did not have a significant effect on sporulation (p=0.797) nor did media 

(p=0.062). Light cycle was highly significant (p=0.001) with darkness supporting greater 

sporulation that a 12 hour cycle (Table 10). No interactions occurred between the light 

cycle and media volume (p=0.077), nor the light cycle and media (p=0.330).

Table 10. Effect of light cycle on sporulation of WIC grown in two different media.

Average sporulation score after 36 hours with SD
Volume GP-POX GPY

12L:12D Darkness 12L:12D Darkness
25 mL 1.8 ±0.8 2.5 ±0.6 0.7 ±0.5 3.0 ±0.0

250 mL 0.8 ±0.8 1.6 ±0.8 2.5 ±1.2 2.7 ±0.52
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Table 11. ANOVA table showing the effect of light cycle on sporulation

Source Sum of 
Squares df Mean - 

Square F-ratio P

Volume 0.055 1 0.055 0.067 0.797

Medium 3.002 1 3.002 3.690 0.062

Cycle 11.055 1 11.055 13.589 0.001

Cycle *Volume 2.686 1 2.686 3.302 0.077

Cylce*Medium 0.792 1 0.792 0.973 0.330

Error 32.542 40 0.814

Discussion

Water source was a key factor in inducing sporulation in A. invadans. Poropotank 

water was chosen for most experiments as it gave consistent results in the past 

(unpublished data). River water is not a constant; nutrient and ion concentrations are 

dependent on rainfall, productivity and salinity. Other authors simply report using 

autoclaved pond water to induce sporulation (Roberts et al. 1993, Willoughby and 

Roberts 1994, Catap and Munday 1998), which can differ dramatically between sources 

and temporally at one source. Mitchell and Yang (1996) did a series of experiments 

using Aphanomyces euteiches and found that many ions or other chemicals in high 

concentrations could affect zoospore production. Both cysteine and thioglycollic acid 

reportedly inhibited the motility of secondary zoospores along with Mg2+. Iron and zinc 

both inhibited secondary zoospore development above concentrations of lO^M and 10'

M respectively, while Ca caused significant alteration in the pattern of sporulation and 

was essential for primary secondary zoospore differentiation. Willoughby and Roberts
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(1994) reported Ca2+ to cause a loss of zoospore motility for A  invadans above 

concentrations of 100-200 mg/L.

The effect of various ions and metals may explain some of the inconsistency with 

sporulation. The sporulation medium in experiment 1 failed to induce sporulation. Lilley 

et al. (2002) also could not induce sporulation in A. invadans using the same sporulation 

medium though Dykstra et al. (1986) reported sporulation o f Aphanomyces spp. after 20 

hours with this sporulation medium.

To date, Kiryu et al. (2002) is the only one that has reported the ability to 

sporulate Aphanomyces invadans in large quantities. In this study, no sporulation 

occurred in any 600 mL of media and sporulation was highly variable in 70 mL and 250 

mL. This could be due to interactions that may occur when more than one plug is placed 

in the same flask. This is unlikely, though, as sporulation still occurred, albeit poorly, 

when three plugs were placed in 25 mL of media and sporulation was not achieved with 

only 1 plug in a larger volume. Fowles (1976) reported a volume effect of media on the 

sporulation of A. stellatus over a short period of time. Water volume may play a role in 

the turgor pressure of the sporangium and therefore influence zoospore release (Johnson 

et al. 2002). Increased water volumes have also been reported to result in decreased 

sporangial development and reduced sporulation in water molds due to reduced oxygen 

tension (Johnson et al. 2002), which may be a feature of a low SA:V ratio. Schneider 

(1963, in Johnson et al. 2002) believed the optimal ratio of hyphal mat to water to be 1:3 

or 1:4 for A. cochioides and believed that greater sporulation could be achieved if the 

water mold was grown in a small volume of broth then placed in a large volume of water.



www.manaraa.com

56
It was believed that this diluted any residual nutrients around the mycelium, maximizing 

sporulation. I essentially simulated this by varying the number of washes in water.

At larger volumes, 3 washes may not have been enough to remove all nutrients 

from the flask and, therefore did not induce sporulation. Other authors have reported 

washing mycelia as much as 5 or 6 times (Willoughby and Roberts 1994, Catap and 

Munday 2002) and Cerenius (1998) incubated the mycelia in water for lhour intervals to 

induce sporulation in A. astaci. I chose 3 washes as the maximum as obtaining and 

preparing large volumes of water was problematic at times. Water had to be obtained 

from the appropriate source then filtered at 0.45 pm. If the water contained excessive 

sediments, it was filtered through a series of filter sizes (ie. a 20 pm, then a 5 pm then a 

0.45 pm), a time consuming process for the large volumes required (10-20 liters). All 

water then had to be augmented with artificial sea salts to 1 psu and autoclaved before 

use.

Temperature played an obvious and expected role in sporulation. WIC 

sporulated best at room temperature, which was expected as optimal growth is reported 

between 20°C and 30°C (Fraser et al. 1992) and our cultures have been grown at room 

temperature since isolation. Sihalath (1999) reported similar results, with optimum 

sporulation of Aphanomyces invadans occurring at 22°C, with little sporulation at 18°C 

and 27.5°C. This may help explain why outbreaks of EUS often occur in autumn when 

temperatures begin to drop (see Chapter #1 for review).

Fowles (1976) reported that Aphanomyces cochloides produced 4 times more 

oogonia when kept under dark conditions but that no detectable differences were seen in 

growth. This is similar to our results, as no detectable difference was seen in the
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diameter of colonies when grown on agar plates in darkness (data not shown) however, 

sporulation was greater in cultures grown in complete darkness than those grown in a 

12:12 light period. Little is known about the effect of light on sporulation. Direct light 

may have a negative effect on sporangial development by increasing temperature within 

flasks; however most literature suggests that sporulation is improved with lengthening of 

the light cycle (Johnson et al. 2002). Photooxidation may alter nutrients required for 

sporulation or produce inhibitors.

The conditions supporting optimal sporulation, or at least, the most consistent 

sporulation, occurred in 25 mL of media with 1 plug of agar grown in GPY broth. 

Sporulation should be done using at least 3 washes of water and flasks should be placed 

in total darkness. These optimal culture conditions may be the result of artificial 

laboratory selection or routine subcultures under similar conditions.
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Chapter 5 - Transfection of estuarine fishes with A. invadans 

^ Introduction

Epidemiological studies have shown that young-of-the-year menhaden are by far the 

most common estuarine species to exhibit ulcerative mycosis. Levine et al. (1990b) 

examined fish caught in pound and trawl nets in the Tar Pamlico Estuary from May 1985 

through April 1987. Of those fish caught, Atlantic menhaden, silver perch, weakfish, 

gizzard shad (Dorosoma cepedianum), Atlantic croaker (Micropogonias undulates), spot 

(Leistomus xanthurus) and southern flounder (Paralichthys lethostigma) were found with 

ulcerative lesions. However, only Atlantic menhaden showed lesion prevalences greater 

than 2%.

Noga et al. (1991) did a similar study from July 1984 through 1988 using only 

pounds nets; however lesions were reported only for species other than Atlantic 

menhaden. This list included southern flounder, hickory shad (Alosa mediocris), striped 

bass, bluefish, Atlantic croaker, weakfish, spot, silver perch, hogchoker (Trinectus 

maculatus) and pinfish (Lagodon rhomboides). Most species had only one representative 

individual with a lesion with only a few fish of each species caught. Kane et al. (1998) 

examined species in the Chicamacomico River, Maryland using cast nets and found 

lesions on a majority of the menhaden caught. External lesions were also seen on one 

spot, one spotted sea trout (Cynoscion nebulosus) and one flounder. Neither of these 

studies attempted to isolate the water mold from any affected fish.

58
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Numerous other studies have demonstrated the high prevalence of lesions seen on 

menhaden. Dykstra et al. (1989) collected menhaden from the Rappahanock River and 

found 69% to show external ulcerative lesions in November 1986 and 29% in January 

1997. Noga et al. (1988) collected 424 affected menhaden from July 1984 through July 

1986 using pound nets in the Pamlico River. Neither of these studies reported lesions on 

any other fish caught.

The purpose of this study was to explore the infectivity of Aphanomyces invadans 

when inoculated into five different host species: Atlantic menhaden, striped killifish 

(Fundulus majalis), mummichog (.Fundulus heteroclitus), mullet and hogchoker. All five 

species are commonly found in estuaries where UM is prevalent in menhaden; however 

none of the species, other than Atlantic menhaden, have been observed with high 

prevalence of lesions. The objectives of this study were (1) to determine if menhaden are 

more susceptible to the oomycete than other estuarine fishes, (2) to identify a more 

robust model of infection for the laboratory setting, and (3) to examine possible host or 

ecological barriers to infection. The null hypothesis (H0) was that there would be no 

difference in lesion development and prevalence between the species. The alternate 

hypothesis (Hi) was that there would be a difference in the lesion development and 

prevalence between the species.

Methods

Fish Collection and Maintenance

Juvenile Atlantic menhaden (estimated fork length 9-11 cm) were collected by 

cast net from local tributaries of the York River and held in a flow-through system 

consisting of 950-L fiberglass troughs and filtered (35 |im) water from the York River
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(salinity 20-24 psu, temperature 25-28°C). Fish were fed daily with an algal paste 

(Nannochloropsis, ~68 million/mL, 5 mL diluted in 1 L deionized water) mixture and 

several grams of HiPro 0.5GR Debut Corey Starter (Corey Feel Mills Ltd., New 

Brunswick, Canada). For the experiments, fish were either kept in 76-L glass aquaria at 

12 psu and room temperature (~23°C) or in 206 L glass aquaria with a flow through 

system (~22 psu and 23°C). The 76 L glass aquaria were equipped with two Whisper 

filters containing a filter bag filled with crushed coral and activated carbon. Water 

quality was monitored weekly and water changes made daily. The 206 L glass aquaria 

received water from the York River. The water was passed through a sand filter, an 

activated carbon filter followed by 10-|Lim and 1-pm canister filters before being 

distributed to the tanks. System filters were rinsed daily and replaced every few weeks as 

needed.

Striped killifish (average total length 90 mm) and mummichog (average total 

length 80 mm) were collected by seine nets and minnow traps baited with crab or squid 

from local tributaries of the York River and held in 76-L glass aquaria containing 

artificial seawater (Marinemix Forty Fathoms, Marine Enterprises International, Inc., 

Baltimore, Maryland, 12 psu) at room temperature. Each tank was equipped with two 

Whisper filters (size C, Tetra/Second Nature, Tetra Sales USA, Blacksburg, Virginia) 

containing a filter bag filled with crushed coral (Bed Rock, Marine Enterprises 

International, Inc., Baltimore, Maryland) (biological filtration) and activated carbon.

Fish were fed every other day with TetraMarine Marine Fish Flakes, mortalities were 

removed daily and water quality monitored weekly. Water changes were made as 

necessary.
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Mullet (not measured) were caught with cast nets by personnel in the Fisheries 

Science department, VIMS, and kept in 206-L glass aquaria with a flow-through system 

connected to the York River. The water was passed through a sand filter, an activated 

carbon filter followed by 10-jnm and 1-jnm canister filters before being distributed to the 

tanks. System filters were rinsed daily and replaced every few weeks as needed. Fish 

were fed daily with either Cory Hi Pro feed or TetraMarine Marine Fish Flakes.

Hogchoker (average total length 10.5 cm) were collected by trawl nets from local 

tributaries of the York River and held in 76-L glass aquaria containing artificial seawater 

(10 psu) at room temperature. The bottom of each tank was covered with a thin layer 

(~l/2”) of autoclaved sand collected from the local beach. Each tank was equipped with 

two Whisper filters containing a filter bag filled with crushed coral (biological filtration) 

and activated carbon. Fish were fed numerous food items such as squid, blood worms, 

Tetra Marine Flakes, brine shrimp, and bait fish however they did not seem to eat 

anything offered to them. Mortalities were removed daily and water quality monitored 

weekly. Water changes were made as necessary.

Oomvcete culture and sporulation

An endemic isolate of Aphanomyces invadans, WIC, was obtained from an 

Atlantic menhaden in Maryland (U.S. Geological Survey, Leetown, West Virginia;

Blazer et al. 1999). The culture was routinely maintained in glucose-peptone-penicillin- 

oxolinic acid broth (GP-POX broth; Willoughby and Roberts 1994, Lilley et al. 1998) for 

3-4 weeks at room temperature and sub-cultured onto GP-POX agar for 5d.

For zoospore production, a piece of agar containing hyphae (6.0 mm diameter) 

was excised from the growing edge of a colony on glucose-peptone yeast agar (GPY
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agar; Lilley et al. 1998) and placed in 25 mL of GPY broth in a 25 mL culture flask 

(Becton Dickinson Labware, Franklin Lakes, New Jersey). Cultures were grown for 5d 

at 23°C in darkness and washed three times with 0.45 pm-filtered (Whatman 54; 

Whatman International Ltd., Maidstone, England), autoclaved river water from the 

Poropotank River, Virginia, augmented to lpsu. To induce sporulation, cultures were 

suspended in the water for 12-36 hours at 23°C in darkness. Zoospore densities were 

estimated with the aid of a hemacytometer (Neubauer/Bright-Line, Buffalo, New York). 

Briefly, an aliquot of culture was preserved in 10% neutral buffered formalin (1 culture:5 

formalin), centrifuged for 10 minutes at 150 ref, 1.8 mL of supernatent removed, the 

pellet resuspended and a 10 pL aliquot counted with the hemacytometer.

Zoospore injection study

Fish were removed from the tanks and anesthetized using MS-222. Each fish was 

injected with an estimated 0.1 mL of an 800 zoospore/mL suspension (80 zoospores/fish) 

using a 27-gauge, 12.7 mm needle and a 1.0 mL syringe. Fish were injected in the right 

flank just below the dorsal fin, allowed to recover from the anesthesia in clean water and 

placed back in the aquaria in which they had been maintained. Control fish were treated 

in the same manner but were injected with 0. lmL of 1 psu sterile water. To confirm 

oomycete viability, triplicate samples of 0.1 mL of the suspension were repeatedly plated 

onto GP-POX agar.

Gross examination and histologic sampling

Aquaria were checked daily for 28 days and all dead and moribund fish removed. 

All fish were examined for gross pathology and those exhibiting lesions photographed. 

Live and moribund fish were killed with MS-222, the lesion excised and fixed in 10%
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neutral buffered formalin. Tissues were decalcified with formic acid-sodium citrate 

solution, dehydrated with ethanol, embedded in paraffin, and blocks sectioned 

transversely at 5 Jim with a rotary microtome. All slides were stained with Harris' 

hematoxylin and eosin.

Results

Lesion prevalence and mortality

Menhaden developed ulcerative lesions identical to those previously described 

(see Kiryu et al. 2002). Lesions appeared within 5 days post injection and by day 23 all 

menhaden were moribund or dead. No control menhaden developed lesions, though 

mortality was high (Table 12). Striped killifish developed ulcerative lesions similar to 

those in menhaden (Figure 12), but they appeared 7-10 days after those in menhaden. 

Killifish experienced similar mortality to menhaden, as all fish, except for one that 

developed lesions, were moribund or dead at the termination of the experiment. No 

control fish developed lesions.

Hogchokers had the highest prevalence of lesions. A reddened area around the 

site of injection appeared within 5 days with swelling of the area by day 7 (Figure 13). 

Mortality data were lost as all hogchokers (control and experimental) died on day 16. No 

hogchokers had been found moribund or dead before this date and water quality was 

within acceptable parameters.

Mummichogs experienced a lower prevalence of lesions compared to the other 

species. Lesions appeared as reddened/purple areas under the skin along the dorsal 

surface (Figure 13). At no time did lesions develop into open ulcers, as did those on the
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menhaden and killifish. Mortality in mummichogs was low; less than half of those that 

developed lesions died. At the end of the experiment, many of the infected mummichogs 

appeared to be recovering from the lesions.

The mullet did not develop any lesions or experience any mortality.

Table 12. Lesion prevalence and mortality from transfection with A. invadans

Species/Treatment Lesions Mortality w/out 
lesions Mortality w/lesions

Menhaden
Experimental

(13/24)
54.2%

(8/24)
33.3%

(13/24)
54.2%

Menhaden Control (0/24)
0.0%

(12/24)
50.0%

(0/24)
0.0%

Mummichog
Experimental

(22/48)
45.8%

(2/48)
4.2%

(10/48)
20.8%

Mummichog
Control

(0/30)
0.0%

(1/30)
3.3%

(0/30)
0.0%

Killifish
Experimental

(29/34)
83.5%

(3/34)
8.8%

(28/34)
82.4%

Killifish Control (0/23)
0.0%

(4/23)
17.4%

(0/23)
0.0%

Hogchoker
Experimental

(28/30)
93.3%

(2/30)
6.7%

(28/30)
93.3%

Hogchoker Control (0/14)
0.0%

(14/14)
100%

(0/14)
0.0%

Mullet
Experimental

(0/7)
0.0%

(0/7)
0.0%

(0/7)
0.0%
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Histology

No lesionous menhaden were processed for histology because the pathology of A. 

invadans infections in menhaden has been well documented (Blazer et al. 1999,2002, 

Kiryu et al. 2002, 2003).

Moribund striped killifish showed similar lesion pathology as menhaden 

previously described by Kiryu et al. (2002). By day 14 post injection, immature, newly 

generated granulomas with a few layers of epitheliod cells were seen. Brown-pigmented 

hyphae were sporadically observed near surface skin tissue and sometimes within the 

core of the granuloma but never within the deeper infected areas of skeletal muscle. A 

few multi-nucleated giant cells were seen. At 18 days post injection, multi-nucleated 

giant cells were more abundant. At day 20, the numbers of multi-nucleated giant cells 

present dropped, and by day 25, they were completely absent (Table 13, Figure 14).

Lesions in mummichogs were characterized by aggregates of inflammatory cells 

including macrophages, fibrocytes, and granulomas at day 20 post injection (Table 13). 

The granulomas surrounded brown-colored hyphae that filled the necrotic spaces of the 

skeletal muscle. Near the surface of the skin surface, hemorrhaging and congestion were 

seen. Fungal invasion extended into the skeletal muscle of the opposite side from which 

zoospores were initially inoculated and granulomas were detected at the alveolar space, 

between the spinal cord and the vertebral column. Hyphae at remote sites stained blue to 

black as had been previously observed in menhaden by Kiryu et al. (2002).

At 27 days post injection, the observed hyphae were swollen and prominently 

brown in color and the number of eosinophilic granular cells (EGCs) increased in 

comparison to those at day 20. EGCs were consistently observed along with elongate-
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shaped granulomas surrounding hyphae. Inflammatory cells, such as macrophages, were 

still present along the myosepta. Some of the fish exhibited a healing response 

characterized by regenerating myocytes (Figure 15).

Mullet did not show any evidence of fungal invasion or immune response. No 

damage to the tissue was seen in any of the seven fish inoculated at the end of the 

experiment.

Table 13. Characteristic histopathological findings compared among three fish species. - 
absent, + mild, ++ moderate, +++ severe.

Histopathological Fish species

findings
Killifish Mummichog Menhaden1

Granulomas immature developed developed

Eosinophilic
granulocytes

+ +++ +++

Giant cells ++ - -

Brown hyphae + +++ -

Wound healing
1 A"T  ̂ ___ , ,

- +++ ++

1 Data from Kiryu et al. (2002, in press)

Discussion

Clearly other estuarine species are susceptible to infection by A. invadans when 

inoculated with secondary zoospores. All of the species inoculated inhabit similar 

estuarine environments, yet Atlantic menhaden is the only species that is consistently 

found with ulcerative lesions. This suggests that barriers to infection must exist, 

preventing other species from developing lesions. The increased prevalence in Atlantic
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menhaden could be due to the behavior of the species. Juvenile menhaden form large 

filter feeding schools (thousands of fish) that frequent shallow, low salinity areas. It is in 

these low salinity areas that zoospore attachment must occur since motility of the 

zoospores ceases above 2 psu (Blazer et al. 1999). Once sporulation is induced in A. 

invadans, it will continue for 12-60 hours (unpublished data). A school of menhaden that 

enters a low salinity region when Aphanomyces is sporulating would all be exposed to 

secondary zoospores at the same time, potentially resulting in an entire school being 

exposed to infection. Mummichogs and killifish have a much more territorial life style 

than menhaden. During the summer months, mummichogs maintain a home range of 36- 

38 meters and rarely migrate out of this area (Abraham 1985). Schools sometimes form, 

but are smaller, numbering only in the hundreds at rare times. Mummichogs also prefer 

higher salinity areas, above 8 psu, though killifish are often found in fresh waters 

(Abraham 1985).

Environmental factors such as pH, hypoxia, and temperature have been 

hypothesized to play a role in the development of UM and EUS (Dykstra and Kane 

2000). Menhaden have a thin epidermal layer and therefore may be more susceptible to 

environmental stressors. Zoospores may have an easier time penetrating the epidermis of 

menhaden than that of other species. Menhaden tissue has also been reported to support 

increased growth of hyphae of A. invadans when compared with agar (Dykstra et al.

1989). Thus, the predilection of A. invadans for Atlantic menhaden may be in part 

determined by the susceptibility of the host to stress and in part by the nature of the oily 

flesh serving as an easy and highly supportive food for the oomycete. Mummichogs and 

killifish are both fairly resistant to stressors. They are able to tolerate abrupt salinity
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changes, a wide temperature range and low dissolved oxygen levels (Abraham 1985). 

Because they are hardier species, they may not be as susceptible to disease as Atlantic 

menhaden. Mummichogs were only mildly affected by the oomycete. The histology 

showed that mummichogs were able to eliminate the penetrating hyphae and regenerate 

damaged muscle tissue, healing from the infection. The response of the mummichog was 

similar to that of the rosy barb reported by Khan et al. (1998). After injection with 

zoospores of A. invadans, rosy barbs developed macrophage infiltration around the 

injection site and by day 20, there was evidence of muscle regeneration in the tissues. 

However, rosy barbs experienced a 100% mortality rate after 22 days as opposed to the 

20.8% mortality in mummichogs. Resistance to infection by A. invadans has been 

reported to occur in tilapia, stickleback and roach (Khan et al. 1998). Carp (Cyprinus 

carpio) inoculated with A. piscicida showed no gross signs of inflammation and mycotic 

lesions only occurred around the injection site (Wada et al. 1996). Surprisingly mullet in 

our inoculation experiment did not develop lesions. They have been reported to be 

susceptible to A invadans species in Australia (Sinderman 1988, Virgona 1992, Lilley et 

al. 1998, Shaheen 1999) and Florida. However, this study had only a small sample size 

with no control treatments.

Menhaden are hard to keep in the laboratory and we routinely lose 25-50% of fish 

24 hours after being caught. In a pilot study, killifish were exposed in an aqueous 

challenge to 330 zoospores/mL for 5.5 hours. Only 1 fish out of 8 developed a lesion, 

which was on day 28 and there were no control treatments (unpublished data). Killifish 

developed lesions similar to menhaden, a promising sign that they may provide a more 

robust laboratory model for future studies
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CONCLUSIONS

Environmental stressors are hypothesized to play a role in the initiation of lesions 

in EUS and UM, both of which are caused by Aphanomyces invadans. Using fast green, 

these studies suggest that a common environmental stressor, hypoxia, may cause subtle 

epidermal damage in areas commonly affected by lesions in Atlantic menhaden. This is 

promising in establishing a link between the initiation of lesions and environmental 

conditions. Despite this, we were not able to show that exposure to hypoxia increases 

lesion prevalence by providing a portal of entry for zoospores. This was most likely due 

to a loss of infectivity in our strain of A. invadans, as few fish in any treatments 

developed lesions. It is clear, however, that A. invadans is capable of reproducing lesions 

in Atlantic menhaden identical to those seen in the wild, as previously reported by other 

investigators. A. invadans was also shown to be capable of initiating lesions (through 

inoculation trials) in striped killifish, hogchoker and mummichog, species that are not 

observed with lesions in the environment. The lack of lesions seen in the wild is most 

likely due to differing lifestyles between the species and differing resistance of the 

species. Mummichogs were able to isolate fungal hyphae with an effective 

granulomatous response and began to show muscle regeneration 4 weeks after 

inoculation. Killifish developed lesions similar to menhaden and show promise as a 

future laboratory model. Additional research is needed to further investigate species
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responses to zoospores of Aphanomyces invadans and to elucidate optimal conditions for 

initiation of lesions in the wild.
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Figure 3. Characteristic lesions seen on Atlantic menhaden
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Figure 4. Life cycle of Aphanomyces sp
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Figure 5. Molecular structure of fast green FCF
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Figure 6. Schematic showing experimental set-up and oxygen regulation
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Figure 7. Series of photographs demonstrating the process used for image 
analysis. A) the fish was outlined (shown in yellow) and the surface area of the 
measured B) those areas “positive” for green were selected (shown highlighted 
red) C) the areas circled and the surface area dyed measured
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Figure 8. Body regions used for analysis of staining
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Figure 9. Series of photographs selected from all fast green experiments. Those 
in the left hand column are all control fish while those in the right hand column 
were exposed to 30% oxygen saturation for 36 hours. All fish have been dipped in 
fast green for 90 seconds and rinsed for 90 seconds
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Figure 10. Photographs representing other biological stains used. A) control fish 
dyed with bismark brown B) fish exposed to 30% oxygen saturation dyed with 
bismark brown C) control fish dyed with alcian blue D) fish exposed to 30% 
oxygen saturation dyed with alcian blue
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Figure 11. Lesions on Atlantic menhaden from net stress treatments at day 13 (A) 
and day 20 (B) after aqueous exposure to A. invadans zoospores.
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Figure 12. Lesions on striped killifish at 14 (A, B) and 20 (C) days post injection 
with A. invadans zoospores
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Figure 13. A) Mummichog at 20 days post injection with A. invadans zoospores. 
Arrow indicates reddened area. B) Hogchoker at 6 Days post injection with A. 
invadans zoospores. Arrowhead indicates reddened area.
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Figure 14. A) General histology of killifish lesions at 14 days post injection. 
Photograph shows the border between muscle tissue and the extensive 
granulomatous response B) Closer view of granulomas of striped killifish at 14 
days post injection and at C) 18 days post injection.
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Figure 15. A) Histologic section from an experimental mummichog at 20 days 
post injection. Note the brown pigmented oomycete hyphae. B, C, D) Histologic 
section of experimental mummichog at 27 days post injection. Note the isolation 
of oomycete hyphae by granulomas and the regeneration of muscle tissue.



www.manaraa.com

MI



www.manaraa.com

LITERATURE CITED

Abraham, B.J. (1985). Species profiles: life histories and environmental requirements of 
coastal fishes and invertebrates (Mid-Atlantic)—mummichog and striped killifish. U.S. 
Fish Wildl Serv. Biol. Rep. 82(11.40). U.S. Army Corps of Engineers, TR EL-82-4. 
23pp.

Ahrenholz, D. W., J. F. Guthrie, and R. M. Clayton (1987). Observations of ulcerative 
mycosis infections on Atlantic Menhaden (Brevoortia tyrannus). NO A A Technical 
Memorandum NMFS-SEFC-196: 28.

Ahrenholz, D. W., J. F. Guthrie, and C. W. Krouse (1989). Results of abundance surveys 
of juvenile Atlantic Menhaden and Gulf Menhaden, Brevoortia tyrannus and B. patronus. 
NOAA Technical Report. NMFS 84:14.

Andersson, G. (2001). Differentiation and pathogenicity within the Saprolegniaceae. 
Comprehensive summaries of Uppsala Dissertations from the Faculty of Science and 
Technology. ACTA Universitatis Upsaliensis.

Barton, B. A. and B. R. Taylor. (1996). Requirements of fishes in northern Alberta 
Rivers with a general review of the adverse effects of low dissolved oxygen. Water Oual. 
Res. J. Can. 31(2): 361-409.

Blazer, V. S., W.K. Vogelbein, C.L. Densmore, E.B. May, J.H. Lilley, and D.E. Zwemer 
(1999). Aphanomyces as a cause of ulcerative skin lesions of menhaden from Chesapeake 
Bay tributaries. J. of Aquatic Animal Health 11: 340-349.

Blazer, V. S., J. H. Lilley, W. B. Schill, Y. Kiryu, C. L. Densmore, V. Panyawachira, and 
S. Chinabut. (2002). Aphanomyces invadans in Atlantic menhaden along the east coast 
of the United States. J. of Aquatic Animal Health 14(1): 1-10.

Bols, Niels C., J. L. Brubacher, R. C. Ganassin, and L.EJ. Lee. (2001). Ecotoxicology 
and innate immunity in fish. Dev, and Comp. Immunology. 25:853-873.

Boon, M. E. and J. S. Drijver (1986). Routine cvtological staining techniques:
Theoretical background and practice. Elsevier Scientific Publishing, New York. 238pp.

Bratner, J.R. and C.E. Windels. (2000). Variability in spore production and 
aggressiveness of Aphanomyces cochlioides. Phytopathology. 40.

84



www.manaraa.com

85
Breitburg, D. L. (1990). Near-shore hypoxia in the Chesapeake Bay: Patterns and 
relationships among physical factors. Estuarine. Coastal and Shelf Science 30: 593-609.

Bunch, E. C. and I. Bejemo. (1997). The effect of environmental factors on the 
susceptibility of hybrid tilapia Oreochromis niloticus x Oreochromis aureus to 
Streptococcis. Isr. J. Aquaculture 49 (2): 67-76.

Burkholder, J. M., E. J. Noga, C. H. Hobbs, and H. B. Glasgow Jr. (1992). New 
’phantom’ dinoflagellate is the causative agent of major estuarine fish kills. Nature 358: 
407-410.

Burkholder J. M. and H. B. Glasgow Jr. (1995). Interactions of a toxic estuarine 
dinoflagellate with microbial predators and prey. Arch. Protistenkd 145:177-188

Burkholder, J. M.,and H. B. Glasgow Jr. (1997). Trophic controls on stage 
tranformations of a toxic ambush-predator dinoflagellate. J. of Euk. Microbiology 44(3): 
200-205.

Burkholder, J. M., H. B. Glasgow, N. J. Deamer-Melia, J. Springer, M. W. Parrow, C. 
Zhang, and P. Cancellierie. (2001). Species of the toxic Pfiesteria complex, and the 
importance of functional type in data interpretation. Env. Health Persp. 109(S5): 667- 
679.

Burnett, L. E. (1997). The challenge of living in hypoxic and hypercapnic aquatic 
environments. American Zoology 37: 633-640.

Callinan, R. B., J. Sammut, and G.C. Fraser (1994). Epizootic ulcerative syndrome (Red 
spot disease) in estuarine fish - Confirmation that exposure to acid sulfate soil runoff and 
an invasive aquatic fungus, Aphanomyces sp. are causative factors. Proceedings of the 
2nd National Conference on Acid Sulfate Soils: 146-151.

Carmichael, G. J., J. R. Tomasso, B. A. Simco, and K. B. Davis. (1984). Confinement 
and water quality induced stress in largemouth bass. Trans. Am. Fish. Soc. 113:167-177.

Catap, E. S., and B. L. Munday. (1998). Effects of variations of water temperature and 
dietary lipids on the expression of experimental Epizootic Ulcerative Syndrome (EUS) in 
sand whiting, Sillago ciliata. Fish Path. 33(4): 327-335.

Catap, E. S. and B. L. Munday. (2002). Development of a method for reproducing 
epizootic ulcerative syndrome using controlled doses of Aphanomyces invaderis in 
species with different salinity requirements. Aquaculture. 209: 35-47.

Chinabut, S., R.J. Roberts, G.R. Willoughby, and M.D. Pearsons (1995). Histopathology 
of snakehead, Chianna striatus (Bloch), experimentally infected with the specific 
Aphanomyces fungus associated with epizootic ulcerative syndrome (EUS) at different 
temperatures. J. Fish Diseases 18:41-47.



www.manaraa.com

86

Conn, H. J. (1953). Biological Stains. Williams and Wilkins Co., Baltimore. 367pp.

Cotran, R.S., V. Kumar and T. Collins. (1999). Robbins Pathological Basis of Disease. 
W.B. Saunders Co. Philadelphia. 1425pp.

Davis, J. C. (1975). Minimal dissolved oxygen requirements of aquatic life with 
emphasis on Canadian species: A review. J. Fish. Res. Board Can . 32(12):2295-2330.

Daye, P. G. and E. T. Garside. (1976). Histopathological changes in surficial tissues of 
brook trout, Salvelinus fontinalis (Mitchell), exposed to acute and chronic levels of pH. 
Can. J. Zoology. 54:2140-2155.

Diaz, R. J., R. J. Neubauer, L. C. Schaffner, L. Pihl, and S. P. Baden. (1992). Continuous 
monitoring in an estuary experiencing hypoxia and the effect of hypoxia on 
macrobenthos and fish. Science of the Total Env. Supplement: 1055-1068.

Dick, M.W. (1990). Phylum Oomycota. Handbook of Protoctista: 661-685. Jones and 
Bartlett, Boston.

Drewett, N., and P. D. Abel. (1983). Pathology of lindane poisoning and of hypoxia in 
the brown trout, Salmo trutta L. J. Fish Bio. 23: 373-384.

Dykstra, M. J., E. J. Noga, J. F. Levine, and D. W. Mo ye (1986). Characterization of the 
Aphanomyces species involved with ulcerative mycosis (UM) in menhanden. Mvcologia 
78(4): 664-672.

Dykstra, M. J., J. F. Levine, E. J. Noga, J. H. Hawkins, P. Gerdes, W. J. Hargis Jr., H. J. 
Grier, and D. Te Strake. (1989). Ulcerative mycosis: a serious menhaden disease of the 
southeastern coastal fisheries of the United States. J. Fish Pis. 12:175-178.

Dykstra, M., and A. S. Kane (2000). Pfiesteriapiscicida and ulcerative mycosis of 
Atlantic Menhaden - Current status of understanding. J. of Aquatic Animal Health 12: 
18-25.

Elliot, D. G., C. M. Aiwohi, and L. J. Applegate. (2001) Use of cell viability stains to 
detect recent skin injury in juvenile salmonids. American Fish Health Meeting. 
Vancouver, Canada.

Fast, M.D., D. E. Sims, J. F. Burka, A. Mustafa, and N. W. Ross. (2002). Skin 
morphology and humoral non-specific defense parameters of mucus and plasma in 
rainbow trout, coho and Atlantic salmon. Comp. Biochem. and Phvs. A. 132:645-657.

Fitzpatrick, S., J. Brummer, B. Hudelson, D. Malvick and C. Grau. (1998). 
Aphanomyces euteiches. Available: http://www.naaic.org/stdtests/Aphano.html.

http://www.naaic.org/stdtests/Aphano.html


www.manaraa.com

87
Fowles, B. (1976). Factors affecting growth and reproduction in selected species of 
Aphanomyces. Mvcologia. 68: 1221-1232.

Fraser, G. C., R. B. Callinan, and L. M. Calder (1992). Aphanomyces species associated 
with red spot disease: an ulcerative disease of estuarine fish from eastern Australia. J. of 
Fish Disease 15: 173-181.

Friedland, K. D. and L. W. Haas (1988). Emigration of juvenile Atlantic Menhaden, 
Brevoortia tyrannus (Pisces: Clupidae) from the York River estuary. Estuaries 11(1): 45- 
50.

Freidland, K. D., D.W. Ahrenholz, and J.F. Guthrie (1996). Formation and seasonal 
evolution of Atlantic Menhaden juvenile nurseries in coastal estuaries. Estuaries 19(1): 
105-114.

Fry, F. E. J. (1969). Some possible physiological stress induced by eutrophication. 
Eutrophication: Causes. Consequences. Correctives 531-536. Washington. National 
Academy of Sciences.

Gaines, J. L. and W. A. Rogers (1975). Some skin lesions on fish. The Pathology of 
Fishes. W. E. Ribelin, George Migaki. Madison, The University of Wisconsin Press: 429- 
441.

Glavin, G.B., S. Szabo, B.R. Johnson, P.L. Xing, R.E. Morales, M. Plebani and L. Nagy. 
(1996). Isolated rat gastric mucosal cells: optimal conditions for cell harvesting, 
measures of viability and direct cytoprotection. J. of Pharm and Ex. Ther. 276(3): 1174- 
1179.

Grattan, L. M., D. Oldach, T. M. Perl, M. H. Lowitt, D. L. Matuszak, C. Dickson, C. 
Parrott, R. C. Shoemaker, C. L. Kauffman, M. P. Wasserman, J. R. Hebei, P. Charache, 
and J. G. Morris Jr. (1998). Learning and memory difficulties after environmental 
exposure to waterways containing toxin-producing Pfiesteria or Pfiesteria-like 
dinoflagellates. Lancet 352(9127): 532-539.

Harms, C. A., C. V. Sullivan, R. G. Hodson and M. K. Stoskopf (1996). Clinical 
pathology and histopathology characteristic of net-stressed striped bass with red tail. L 
of Aq. Animal Health 8:82-86.

Hatai, K., S. Egusa, S. Takahashi and K. Ooe. (1977). Study on the pathogenic fungus of 
mycotic granulomatosis - 1. Isolation and pathogenicity of the fungus from cultured ayu 
infected with the disease. Fish Path. 11(2): 129-133.

Hatai, Kishio, K. Nakamura, S. A. Rha, K. Yuasa, and S. Wada. (1994). Aphanomyces 
infection in Dwarf Gourami (Colisa lalia). Fish Path. 29(2): 95-99.



www.manaraa.com

Hawkes, J. W. (1974). The structure of fish skin I. General organization. Cell and Tissue 
Research 149: 147-158.

Heath, A. G. (1995). Water pollution and fish physiology. Second Edition. CRC Press, 
Boca Raton, FL.

Henrickson, R. C., and A. G. Matoltsy (1968). The fine structure of teleost epidermis I. 
Introduction and filament-containing cells. J. Ultrastucture Research 21: 194-212.

Henrickson, R. C., and A. G. Matoltsy (1968). The fine structure of teleost epidermis II. 
Mucous cells. J. Ultrastucture Research 21: 213-221.

Iger, Y. and M. Abraham. (1990). The process of skin healing in experimentally 
wounded carp. J. Fish Bio. 36:421-437.

Iger, Y., H. A. Jenner, and S. E. Wendelaar Bonga. (1994). Cellular responses in the skin 
of trout (Oncorhynchus mykiss) exposed to temperature elevation. J. Fish Bio. 44: 921- 
935.

Iger Y, P.H.M. Balm, H.A. Jenner, and S.E. Wendelaar Bonga (1995). Cortisol induces 
stress-related changes in the skin of rainbow trout (Onycorhynchus mykiss). Gen. Comp. 
Endocrinol. 97: 188-198.

Ingram, G. A. (1980). Substances involved in the natural resistance of fish to infection -  
A review. J. Fish Bio. 16: 23-60.

Johnson, T.W. Jr., R. L. Seymour and D. E. Padgett. (2002). Biology and svstematics of 
the Saprolegniaceae. In press.

Kane, A. S., D. Oldach, and R. Reimschuessel. (1998). Fish lesions in the Chesapeake 
Bay: Pfiesteria-Xsks, dinoflagellates and other etiologies. Maryland Med. J. 37(3): 106- 
112 .

Khan, M. H., L. Marshall, K. D. Thompson, R. E. Campbell, and J. H. Lilley. (1998). 
Susceptibility of five fish species (Nile tilapia, Rosy barb, Rainbow trout, Stickleback 
and Roach) to intramuscular injection with the oomycete fish pathogen, Aphanomyces 
invadans. Bull. Eur. Ass. Fish Pathology. 18(6): 192-197.

Kirkeley, J (1997). Virginia’s commercial fishing industry: Its economic performance 
and contributions. SRAMSOE #337, VIMS, VSG-97-02.

Kiryu, I and H. Wakabayashi. (1999). Adherence of suspended particles to the body 
surface of rainbow trout. Fish Path. 34(4): 177-182.



www.manaraa.com

89
Kiryu, Y., J. D. Shields, W. K. Vogelbein, D. E. Zwemer and H. Kator. (2002)
Induction of skin ulcers in Atlantic menhaden by injection and aqueous exposure to the 
zoospores of Aphanomyces invadans. J. of Aquatic Animal Health 14(1): 11-24.

Kramer, D. L. (1987) Dissolved oxygen and fish behavior. Environmental Biology of 
Fishes 18(2): 81-92.

Law, M. (2001). Differential diagnosis of ulcerative lesions in fish. Env. Health Persp 
109(S5):681-686.

Levine, J. F., J. H. Hawkins, M. J. Dykstra, E. J. Noga, D. W. Moye, and R. S. Cone 
(1990a). Epidemiology of Ulcerative Mycosis in Atlantic Menhaden in the Tar-Palmico 
River Estuary, North Carolina. J. of Aquatic Animal Health 2: 162-171.

Levine, J. F., J. H. Hawkins, M. J. Dykstra, E. J. Noga, D. W. Moye, and R. S. Cone. 
(1990b). Species distribution of ulcerative lesions on finfish in the Tar-Pamlico River 
Estuary, North Carolina. Pis, of Aquatic Org. 8: 1-5.

Lilley, J. H., and R. J. Roberts (1997). Pathogenicity and culture studies comparing 
Aphanomyces involved in epizootic ulcerative syndrome (EUS) with other similar fungi. 
J. of Fish Diseases 20: 135-144.

Lilley, J. H., R.B. Callinan, S. Chinabut, S. Kanchanakhan, I.H. MacRae, and M.J. 
Phillips (1998). Epizootic Ulcerative Syndrome fEUSf Technical Handbook. Bangkok, 
The Aquatic Animal Health Research Institute.

Marotz, B. L., W. H. Herke, and B. D. Rogers (1990). Movement of Gulf Menhaden 
through three marshland routes in southwestern Lousiana. N. Am. J. of Fisheries Man. 
10:408-417.

Mazeaud, M. M., F. Mazeaud, and E. M. Donaldson (1977). Primary and secondary 
effects of stress in fish: Some new data with a general review. Tran, of the Am. Fish. Soc. 
106(3): 201-212.

McKim, J. M. and G. J. Lien. (2001). Toxic responses of the skin. In: Target organ 
toxicity in marine and freshwater teleosts. Ed. Schlenk, D. and W. H. Benson. Taylor 
and France, London, pp. 151-223.

Merriner, J. and D. Vaughn. (1987). Ecosystem and fishery implications of ulcerative 
mycosis. Proceedings of the Worksop on Fishery Diseases for the Albemarle-Pamlico 
Estuarine Study, Raleigh, NC.

Meyer, F. P. (1970). Seasonal fluctuations in the incidence of disease on fish farms. A 
Symposium on Diseases of Fishes and Shellfishes, Washington DC, American Fisheries 
Society.



www.manaraa.com

90
Mitchell, J. E. and C. Y. Yank. (1966). Factors affecting growth and development of 
Aphanomyces euteiches.Phytopathology. 56:917-922.

Neish, G. A. and G. C. Hughes (1980). Fungal diseases of fish. TFH Publications Inc. 
Noga, E. J., and M.J. Dykstra (1986). Oomycete fungi associated with ulcerative mycosis 
in menhaden, Brevoortia tyrannus (Latrobe). J. of Fish Diseases 9: 47-53.

Noga, E. J., J. F. Levine, M. J. Dyskstra, and J. H. Hawkins (1988). Pathology of 
ulcerative mycosis in Atlantic menhaden Brevoortia tyrannus. Pis, of Aquatic Org. 4: 
189-197.

Noga, E. J., J. F. Wright, J. F. Levine, M. J. Dykstra and J. H. Hawkins. (1991). 
Dermatological diseases affecting fishes of the Tar-Pamlico Estuary, North Carolina.
Pis. Aquatic Org. 10: 87-92.

Noga, E. J., S. E. Johnson, D. W. Dickey, D. Daniels, J. M. Burkholder, and D. W. 
Stanley (1993). Determining the relationship between water quality and ulcerative 
mycosis in Atlantic menhaden. North Caroline State University. Project No. 92-15.

Noga, E. J., J. H. Kerby, W. King, D. P. Aucoin and F. Giesbrecht (1994). Quantitative 
comparison of the stress response of striped bass (Morone saxatilis) and hybrid bass 
{Morone saxatilis x Morone chrysops and Morone saxatilis x Morone americana). Am.
J. Vet. Res. 55:405-409.

Noga, E. J., L. Khoo, J.B. Stevens, Z. Fan, and J.M. Burkholder (1996). Novel toxic 
dinoflagellate causes epidemic disease in estuarine fish. Marine Pollution Bull. 32(2): 
219-224.

Noga, E. J., S. Botts, M.-S. Yang, and R. Avtalion (1998). Acute Stress Causes Skin 
Ulceration in Striped Bass and Hybrid Bass (Morone). Vet. Path. 35: 102-107.

Noga, E. J. (2000). Skin ulcers in fish: Pfiesteria and other etiologies. Tox. Path. 
28(6):807-823.

Nyhlen, L. and T. Unestam. (1980). Wound reactions and Aphanomyces astaci growth 
in crayfish cuticle. J. Invert. Path. 36:187-197.

Oosten, J. V. (1957). The skin and scales. Metabolism. Academic Press, Inc., New 
York. 1:207-224.

Paerl, H. W., J. L. Pickney, J. M. Fear, and B. L. Peierls (1998). Ecosystem responses to 
internal and watershed organic matter loading: consequences for hypoxia in the 
eutrophying Neuse River Estuary, North Carolina, USA. Marine Eco. Progress Ser. 166: 
17-25.



www.manaraa.com

91
Pickering, A. D., and J. Dunston (1983). Administration of cortisol to brown trout Salmo 
trutta L., and its effects on the susceptibility to Saprolegnia infection and furunculosis. J. 
of Fish Bio. 23: 163-175.

Plumb, A., J.M Grizzle, and J. Defigueiredo (1976). Necrosis and bacterial infection in 
Channel Catfish {Ictalurus punctatus) following hypoxia. J. of Wildlife Pis. 12(April): 
247-253.
Powell, M. D., D. J. Speare and J. F. Burka. (1992). Fixation of mucus on rainbow trout 
(Oncorhynchus mykiss Walbaum) gills for light and electron microscopy. J. Fish 
Biology. 41: 813-824.

Quiniou, S.M., S. Bigler, W. Clem, and J. E. Bly. (1997). Acute decreases in water 
temperature influence mucous cell distribution in the epidermis of channel catfish: 
possible etiology for winter Saprolegniosis. Dev, and Comp. Immunology. 21(2): 171.

Roberts, R. J., L. G. Willougby and S. Chinabut. (1993). Mycotic aspects of epizootic 
ulcerative syndrome (EUS) of asian fishes. J. Fish Pis. 16: 169-183.

Rogers and Avyle (1983). Species profiles: Life histories and environmental 
requirements of coastal fishes (South Atlantic), Atlantic menhaden. Fish and Wildlife 
Service. TR EL-82-4.

Sammutt, J. White, I and Melville, M. D. (1996). Acidification of an estuarine tributary 
in eastern Australia due to drainage of acid sulfate soils. Marine and Freshwater Res. 
47(5): 669-684.

Scott, A. L. and W. A. Rogers. (1980). Histological effects of prolonged sublethal 
hypoxia on channel catfish Ictalurus punctatus (Rafinesque). J. Fish Pis. 3: 305-316.

Shaheen, A. A., E. Elsayed, and M. Faisal (1999). Isolation of Aphanomyces sp(p). 
associated with skin lesions and mortalities in the striped (Mugil cephalus) and the thin 
lip {Liza ramada) grey mullets. Bull, of Eur. Fish Path. 19(2): 79-82.

Sihalath, S. (1999). Studies on zoospore physiology and chemotaxis of Aphanomyces 
invadans. Institute of Aquaculture. Stirling, Scotland, University of Sterling:72.

Snieszko, S. F. (1974). The effects of environmental stress on outbreaks of infectious 
diseases of fishes. J. of Fish Bio. 6: 197-208.

Strivastava, R. C. (1979). Aphanomycosis - A new threat to fish population. Mvkosen 
22(1): 25-29.

Tomasso, J. R., K. B. Davis, and N. C. Parker. (1981). Plasma corticosteroid dynamics in 
channel catfish, Ictalurus puntatus (Rafinesque), during and after oxygen depletion. L 
Fish Bio. 18: 519-526.



www.manaraa.com

92
Van Den Thillart, G., and A. Van Waarde. (1985). Teleosts in hypoxia: aspects of 
anaerobic metabolism. Mol. Phvs. 8: 393-409.

Virgona, J. L. (1992). Environmental factors influencing the prevalence of a cutaneous 
disease (red spot) in the sea mullet, Mugil cephalus L., in the Clarence River, New South 
Wales, Australia. J. of Fish Diseases 15: 363-378.

Vogelbein, W. K., J. D. Shields, L. W. Haas, K. S. Reece and D. E. Zwemer (2001).
Skin ulcers in estuarine fishes: A comparative pathological evaluation of wild and 
laboratory exposed fish. Env. Health Persp. 109(S5): 687-693.

Wada, S., S. Rha, T. Kondoh, H. Suda, K. Hatai, and H. Ishii (1996). Histopathological 
comparison between Ayu and Carp artificially infected with Aphanomyces piscicida.
Fish Path. 31(2): 71-80.

Wedemeyer, G. (1970). The role of stress in the disease resistance of fishes. A 
Symposium on Disease of Fishes and Shellfish, Washington DC, American Fisheries 
Society.

Wedemeyer, G. A. and C. P. Goodyear. (1984). Diseases caused by environmental 
stressors. Diseases of Marine Organisms. O. Kinne. Hamburg, Biologische Anstalt 
Helgoland. 4:424-433.

Wedemeyer, G. A., D. J. Mcleay, and C. P. Goodyear (1984). Assessing the tolerance of 
fish and fish population to environmental stress: The problems and methods of 
monitoring. Contaminant effects on fisheries. J. O. Nriagu, Victor W. Cairns, Peter V. 
Hodson. New York, John Wiley & Sons. 16: 163-195.

Weisenthal, L.M., J.A. Mardsen, P.L. Dill, and C.K. Macaluso. (1983) A novel dye 
exclusion method for testing in vitro chemosensitivity of human tumors. Cancer 
Research. 43(2): 749-957.

Willoughby, L. G. and R. J. Roberts. (1994). Aphanomyces from a diseased fish. 
Mvcologia Res. 98(12): 1463-1464.

Willoughby, L. G., R.J. Roberts, and S. Chinabut (1995). Aphanomyces invaderis sp. 
nov., the fungal pathogen of freshwater tropical fish affected by epizootic ulcerative 
syndrome. J. of Fish Pis. 18: 273-275.

Willoughby, L. G. and S. Chinabut. (1996). Self-staling in Aphanomyces invaderis, the 
Fungal Pathogen of Freshwater, Tropical Fish Affected by Epizootic Ulcerative 
Syndrome (EUS). AAHRI Newsletter. 5(2).



www.manaraa.com

93

VITA

RaeMarie Ann Johnson

Bom in Iowa City, Iowa, 10 June 1978. Graduated from Neshaminy High 
School, Langhome, Pennsylvania in 1996. Earned a B.S. in Marine Science from Eckerd 
College, St. Petersburg, Florida in 2000. Entered the Master’s program in College of 
William and Mary, School of Marine Science in August 2000.


	Investigations into the Etiology of Ulcerative Lesions in Atlantic Menhaden, Brevoortia tyrannus
	Recommended Citation

	tmp.1539724688.pdf.5sp9L

